Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 8 |
Descriptor
Error of Measurement | 10 |
Sampling | 10 |
Research Problems | 6 |
Educational Research | 3 |
Hierarchical Linear Modeling | 3 |
Sample Size | 3 |
Statistical Bias | 3 |
Children | 2 |
Computation | 2 |
Correlation | 2 |
Data Analysis | 2 |
More ▼ |
Source
Journal of Experimental… | 10 |
Author
Beasley, T. Mark | 1 |
Carver, Ronald P. | 1 |
Finch, W. Holmes | 1 |
Frank Nelson | 1 |
Harring, Jeffrey R. | 1 |
Hartman, Bruce W. | 1 |
Hsin-Yun Lee | 1 |
Jennifer Cromley | 1 |
Jia, Yuane | 1 |
Konold, Timothy | 1 |
Kwok, Oi-man | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 9 |
Reports - Evaluative | 1 |
Education Level
Elementary Education | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Audience
Location
California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Hsin-Yun Lee; You-Lin Chen; Li-Jen Weng – Journal of Experimental Education, 2024
The second version of Kaiser's Measure of Sampling Adequacy (MSA[subscript 2]) has been widely applied to assess the factorability of data in psychological research. The MSA[subscript 2] is developed in the population and little is known about its behavior in finite samples. If estimated MSA[subscript 2]s are biased due to sampling errors,…
Descriptors: Error of Measurement, Reliability, Sampling, Statistical Bias
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
Jia, Yuane; Konold, Timothy – Journal of Experimental Education, 2021
Traditional observed variable multilevel models for evaluating indirect effects are limited by their inability to quantify measurement and sampling error. They are further restricted by being unable to fully separate within- and between-level effects without bias. Doubly latent models reduce these biases by decomposing the observed within-level…
Descriptors: Hierarchical Linear Modeling, Educational Environment, Aggression, Bullying
Lee, Daniel Y.; Harring, Jeffrey R.; Stapleton, Laura M. – Journal of Experimental Education, 2019
Respondent attrition is a common problem in national longitudinal panel surveys. To make full use of the data, weights are provided to account for attrition. Weight adjustments are based on sampling design information and data from the base year; information from subsequent waves is typically not utilized. Alternative methods to address bias from…
Descriptors: Longitudinal Studies, Research Methodology, Research Problems, Data Analysis
Finch, W. Holmes – Journal of Experimental Education, 2016
Multivariate analysis of variance (MANOVA) is widely used in educational research to compare means on multiple dependent variables across groups. Researchers faced with the problem of missing data often use multiple imputation of values in place of the missing observations. This study compares the performance of 2 methods for combining p values in…
Descriptors: Multivariate Analysis, Educational Research, Error of Measurement, Research Problems
Beasley, T. Mark – Journal of Experimental Education, 2014
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Descriptors: Statistical Analysis, Effect Size, Nonparametric Statistics, Statistical Inference
Lai, Mark H. C.; Kwok, Oi-man – Journal of Experimental Education, 2015
Educational researchers commonly use the rule of thumb of "design effect smaller than 2" as the justification of not accounting for the multilevel or clustered structure in their data. The rule, however, has not yet been systematically studied in previous research. In the present study, we generated data from three different models…
Descriptors: Educational Research, Research Design, Cluster Grouping, Statistical Data
Morin, Alexandre J. S.; Marsh, Herbert W.; Nagengast, Benjamin; Scalas, L. Francesca – Journal of Experimental Education, 2014
Many classroom climate studies suffer from 2 critical problems: They (a) treat climate as a student-level (L1) variable in single-level analyses instead of a classroom-level (L2) construct in multilevel analyses; and (b) rely on manifest-variable models rather than on latent-variable models that control measurement error at L1 and L2, and sampling…
Descriptors: Classroom Environment, Hierarchical Linear Modeling, Structural Equation Models, Grade 5

Carver, Ronald P. – Journal of Experimental Education, 1993
Four things are recommended to minimize the influence or importance of statistical significance testing. Researchers must not neglect to add "statistical" to significant and could interpret results before giving p-values. Effect sizes should be reported with measures of sampling error, and replication can be built into the design. (SLD)
Descriptors: Educational Researchers, Effect Size, Error of Measurement, Research Methodology

Hartman, Bruce W.; And Others – Journal of Experimental Education, 1986
The detrimental effects of nonresponse bias are particularly significant given the widespread use of the survey data collection method in educational surveys. Current methods for remediating nonresponse bias in educational surveys are explored and critiqued. (Author/LMO)
Descriptors: Data Collection, Educational Assessment, Elementary Secondary Education, Error of Measurement