NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Macho, Siegfried; Ledermann, Thomas – Psychological Methods, 2011
The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…
Descriptors: Structural Equation Models, Computation, Comparative Analysis, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Manolov, Rumen; Solanas, Antonio – Psychological Methods, 2012
There is currently a considerable diversity of quantitative measures available for summarizing the results in single-case studies. Given that the interpretation of some of them is difficult due to the lack of established benchmarks, the current article proposes an approach for obtaining further numerical evidence on the importance of the results,…
Descriptors: Sampling, Probability, Statistical Significance, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Satorra, Albert – Psychological Methods, 2010
When using existing technology, it can be hard or impossible to determine whether two structural equation models that are being considered may be nested. There is also no routine technology for evaluating whether two very different structural models may be equivalent. A simple nesting and equivalence testing (NET) procedure is proposed that uses…
Descriptors: Structural Equation Models, Testing, Simulation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Tonidandel, Scott; LeBreton, James M.; Johnson, Jeff W. – Psychological Methods, 2009
Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical significance of the relative weights. J. W. Johnson…
Descriptors: Multiple Regression Analysis, Statistical Significance, Statistical Inference, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt – Psychological Methods, 2008
In multilevel modeling (MLM), group-level (L2) characteristics are often measured by aggregating individual-level (L1) characteristics within each group so as to assess contextual effects (e.g., group-average effects of socioeconomic status, achievement, climate). Most previous applications have used a multilevel manifest covariate (MMC) approach,…
Descriptors: Statistical Analysis, Sampling, Context Effect, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Sanchez-Meca, Julio; Marin-Martinez, Fulgencio – Psychological Methods, 2008
One of the main objectives in meta-analysis is to estimate the overall effect size by calculating a confidence interval (CI). The usual procedure consists of assuming a standard normal distribution and a sampling variance defined as the inverse of the sum of the estimated weights of the effect sizes. But this procedure does not take into account…
Descriptors: Intervals, Monte Carlo Methods, Meta Analysis, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Beasley, William Howard; DeShea, Lise; Toothaker, Larry E.; Mendoza, Jorge L.; Bard, David E.; Rodgers, Joseph Lee – Psychological Methods, 2007
This article proposes 2 new approaches to test a nonzero population correlation ([rho]): the hypothesis-imposed univariate sampling bootstrap (HI) and the observed-imposed univariate sampling bootstrap (OI). The authors simulated correlated populations with various combinations of normal and skewed variates. With [alpha[subscript "set"]]=0.05, N…
Descriptors: Correlation, Sampling, Sample Size, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J. – Psychological Methods, 2007
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
Descriptors: Multivariate Analysis, Computation, Nonparametric Statistics, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Bonnett, Douglas G. – Psychological Methods, 2008
Most psychology journals now require authors to report a sample value of effect size along with hypothesis testing results. The sample effect size value can be misleading because it contains sampling error. Authors often incorrectly interpret the sample effect size as if it were the population effect size. A simple solution to this problem is to…
Descriptors: Intervals, Hypothesis Testing, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Zou, Guang Yong – Psychological Methods, 2007
Confidence intervals are widely accepted as a preferred way to present study results. They encompass significance tests and provide an estimate of the magnitude of the effect. However, comparisons of correlations still rely heavily on significance testing. The persistence of this practice is caused primarily by the lack of simple yet accurate…
Descriptors: Intervals, Effect Size, Research Methodology, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Ozechowski, Timothy J.; Turner, Charles W.; Hops, Hyman – Psychological Methods, 2007
This article demonstrates the use of mixed-effects logistic regression (MLR) for conducting sequential analyses of binary observational data. MLR is a special case of the mixed-effects logit modeling framework, which may be applied to multicategorical observational data. The MLR approach is motivated in part by G. A. Dagne, G. W. Howe, C. H.…
Descriptors: Probability, Young Adults, Sampling, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Michael C.; Maeda, Yukiko – Psychological Methods, 2006
The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…
Descriptors: Generalization, Sampling, Reliability, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Valentine, Jeffrey C.; McHugh, Cathleen M. – Psychological Methods, 2007
Using meta-analysis, randomized experiments in education that either clearly did or clearly did not experience student attrition were examined for the baseline comparability of groups. Results from 35 studies suggested that after attrition, the observed measures of baseline comparability of groups did not differ more than would be expected given…
Descriptors: Sampling, Effect Size, Student Attrition, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Simonton, Dean Keith – Psychological Methods, 1999
Psychologists occasionally study eminent individuals, such as Nobellaureates, U.S. presidents, Olympic athletes, chess grandmasters, movie stars, and even distinguished psychologists. Studies using such significant samples may be differentiated along 7 distinct dimensions: qualitative versus quantitative, single versus multiple case, nomothetic…
Descriptors: Gifted, Psychological Studies, Research Methodology, Sampling
Previous Page | Next Page ยป
Pages: 1  |  2