NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hancock, Stacey A.; Rummerfield, Wendy – Journal of Statistics Education, 2020
Sampling distributions are fundamental to an understanding of statistical inference, yet research shows that students in introductory statistics courses tend to have multiple misconceptions of this important concept. A common instructional method used to address these misconceptions is computer simulation, often preceded by hands-on simulation…
Descriptors: Teaching Methods, Sampling, Experiential Learning, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
García, Víctor N.; Sánchez, Ernesto – North American Chapter of the International Group for the Psychology of Mathematics Education, 2017
In the present study we analyze how students reason about or make inferences given a particular hypothesis testing problem (without having studied formal methods of statistical inference) when using Fathom. They use Fathom to create an empirical sampling distribution through computer simulation. It is found that most student´s reasoning rely on…
Descriptors: High School Students, Logical Thinking, Hypothesis Testing, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Katsikopoulos, Konstantinos V.; Schooler, Lael J.; Hertwig, Ralph – Psychological Review, 2010
Heuristics embodying limited information search and noncompensatory processing of information can yield robust performance relative to computationally more complex models. One criticism raised against heuristics is the argument that complexity is hidden in the calculation of the cue order used to make predictions. We discuss ways to order cues…
Descriptors: Heuristics, Computer Simulation, Cues, Prediction
Johnson, H. Dean; Evans, Marc A. – Australian Mathematics Teacher, 2008
Understanding the concept of the sampling distribution of a statistic is essential for the understanding of inferential procedures. Unfortunately, this topic proves to be a stumbling block for students in introductory statistics classes. In efforts to aid students in their understanding of this concept, alternatives to a lecture-based mode of…
Descriptors: Class Activities, Intervals, Computer Software, Sampling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moen, David H.; Powell, John E. – American Journal of Business Education, 2008
Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…
Descriptors: Learning Modules, Computer Simulation, Classroom Techniques, Concept Teaching
Peer reviewed Peer reviewed
Direct linkDirect link
Moen, David H.; Powell, John E. – College Teaching Methods & Styles Journal, 2005
Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…
Descriptors: Spreadsheets, Computer Software, Computer Simulation, Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Caulkins, Jonathan P. – Journal of Policy Analysis and Management, 2002
In this article, the author discusses the use in policy analysis of models that incorporate uncertainty. He believes that all models should consider incorporating uncertainty, but that at the same time it is important to understand that sampling variability is not usually the dominant driver of uncertainty in policy analyses. He also argues that…
Descriptors: Statistical Inference, Models, Policy Analysis, Sampling