NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Cai, Li – Journal of Educational and Behavioral Statistics, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Francis L. – Practical Assessment, Research & Evaluation, 2014
Clustered data (e.g., students within schools) are often analyzed in educational research where data are naturally nested. As a consequence, multilevel modeling (MLM) has commonly been used to study the contextual or group-level (e.g., school) effects on individual outcomes. The current study investigates the use of an alternative procedure to…
Descriptors: Hierarchical Linear Modeling, Regression (Statistics), Educational Research, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich – Psychological Methods, 2011
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Descriptors: Simulation, Educational Psychology, Social Sciences, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Nagengast, Benjamin; Trautwein, Ulrich; Morin, Alexandre J. S.; Abduljabbar, Adel S.; Koller, Olaf – Educational Psychologist, 2012
Classroom context and climate are inherently classroom-level (L2) constructs, but applied researchers sometimes--inappropriately--represent them by student-level (L1) responses in single-level models rather than more appropriate multilevel models. Here we focus on important conceptual issues (distinctions between climate and contextual variables;…
Descriptors: Foreign Countries, Classroom Environment, Educational Research, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt – Psychological Methods, 2008
In multilevel modeling (MLM), group-level (L2) characteristics are often measured by aggregating individual-level (L1) characteristics within each group so as to assess contextual effects (e.g., group-average effects of socioeconomic status, achievement, climate). Most previous applications have used a multilevel manifest covariate (MMC) approach,…
Descriptors: Statistical Analysis, Sampling, Context Effect, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin – Multivariate Behavioral Research, 2009
This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…
Descriptors: Educational Environment, Context Effect, Models, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Birenbaum, Menucha – Studies in Educational Evaluation, 2007
High quality assessment practice is expected to yield valid and useful score-based interpretations about what the examinees know and are able to do with respect to a defined target domain. Given this assertion, the article presents a framework based on the "unified view of validity," advanced by Cronbach and Messick over two decades ago, to assist…
Descriptors: Quality Control, Student Evaluation, Validity, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kane, Thomas J.; Staiger, Douglas O. – Brookings Papers on Education Policy, 2002
By the spring of 2000, forty states had begun using student test scores to rate school performance. Twenty states have gone a step further and are attaching explicit monetary rewards or sanctions to a school's test performance. In this paper, the authors focus on accountability programs in which states measure the effectiveness of individual…
Descriptors: Elementary Schools, Accountability, Scores, Risk