Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 3 |
Descriptor
| Error Patterns | 3 |
| Sampling | 3 |
| Statistical Bias | 3 |
| Statistical Inference | 3 |
| Monte Carlo Methods | 2 |
| Simulation | 2 |
| Causal Models | 1 |
| Classification | 1 |
| Correlation | 1 |
| Error Correction | 1 |
| Error of Measurement | 1 |
| More ▼ | |
Author
| Bishara, Anthony J. | 1 |
| Ellison, George T. H. | 1 |
| Gallitto, Elena | 1 |
| Hittner, James B. | 1 |
| Leth-Steensen, Craig | 1 |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 3 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ellison, George T. H. – Journal of Statistics and Data Science Education, 2021
Temporality-driven covariate classification had limited impact on: the specification of directed acyclic graphs (DAGs) by 85 novice analysts (medical undergraduates); or the risk of bias in DAG-informed multivariable models designed to generate causal inference from observational data. Only 71 students (83.5%) managed to complete the…
Descriptors: Statistics Education, Medical Education, Undergraduate Students, Graphs
Leth-Steensen, Craig; Gallitto, Elena – Educational and Psychological Measurement, 2016
A large number of approaches have been proposed for estimating and testing the significance of indirect effects in mediation models. In this study, four sets of Monte Carlo simulations involving full latent variable structural equation models were run in order to contrast the effectiveness of the currently popular bias-corrected bootstrapping…
Descriptors: Mediation Theory, Structural Equation Models, Monte Carlo Methods, Simulation
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation

Peer reviewed
Direct link
