Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 17 |
Since 2016 (last 10 years) | 54 |
Since 2006 (last 20 years) | 136 |
Descriptor
Error of Measurement | 300 |
Sampling | 300 |
Statistical Analysis | 71 |
Research Methodology | 64 |
Sample Size | 63 |
Statistical Bias | 52 |
Research Design | 51 |
Computation | 44 |
Evaluation Methods | 39 |
Simulation | 38 |
Correlation | 36 |
More ▼ |
Source
Author
Marsh, Herbert W. | 6 |
Thompson, Bruce | 5 |
Ludtke, Oliver | 4 |
Nagengast, Benjamin | 4 |
Olejnik, Stephen F. | 4 |
Qian, Jiahe | 4 |
Trautwein, Ulrich | 4 |
Algina, James | 3 |
Brick, J. Michael | 3 |
Forsyth, Robert A. | 3 |
Haberman, Shelby J. | 3 |
More ▼ |
Publication Type
Education Level
Location
Australia | 7 |
United States | 5 |
California | 4 |
Germany | 3 |
United Kingdom (England) | 3 |
Canada | 2 |
New Jersey | 2 |
United Kingdom (Great Britain) | 2 |
Arizona | 1 |
Cyprus | 1 |
European Union | 1 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 1 |
Job Training Partnership Act… | 1 |
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Abdul Haq; Muhammad Usman; Manzoor Khan – Measurement: Interdisciplinary Research and Perspectives, 2024
Measurement errors may significantly distort the properties of an estimator. In this paper, estimators of the finite population variance using the information on first and second raw moments of the study variable are developed under stratified random sampling that incorporate the variance of a measurement error component. Additionally, combined…
Descriptors: Sampling, Error of Measurement, Evaluation Methods, Statistical Bias
Hsin-Yun Lee; You-Lin Chen; Li-Jen Weng – Journal of Experimental Education, 2024
The second version of Kaiser's Measure of Sampling Adequacy (MSA[subscript 2]) has been widely applied to assess the factorability of data in psychological research. The MSA[subscript 2] is developed in the population and little is known about its behavior in finite samples. If estimated MSA[subscript 2]s are biased due to sampling errors,…
Descriptors: Error of Measurement, Reliability, Sampling, Statistical Bias
Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to…
Descriptors: Error of Measurement, Models, Evaluation Methods, Item Analysis
van Aert, Robbie C. M. – Research Synthesis Methods, 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated.…
Descriptors: Correlation, Meta Analysis, Sampling, Simulation
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
John R. Donoghue; Carol Eckerly – Applied Measurement in Education, 2024
Trend scoring constructed response items (i.e. rescoring Time A responses at Time B) gives rise to two-way data that follow a product multinomial distribution rather than the multinomial distribution that is usually assumed. Recent work has shown that the difference in sampling model can have profound negative effects on statistics usually used to…
Descriptors: Scoring, Error of Measurement, Reliability, Scoring Rubrics
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Do the Numbers Add Up? Questioning Measurement That Places Australian ECEC Teaching as 'Low Quality'
Thorpe, Karen; Houen, Sandy; Rankin, Peter; Pattinson, Cassandra; Staton, Sally – Australian Educational Researcher, 2023
Internationally, standard observational measures of Early Childhood Education and Care (ECEC) are used to assess the quality of provision. They are applied as research tools but, significantly, also guide policy decisions, distribution of resources and public opinion. Considerable faith is placed in such measures, yet their validity, reliability…
Descriptors: Foreign Countries, Educational Quality, Classroom Environment, Measures (Individuals)
Ning Jiang – ProQuest LLC, 2022
The purpose of this study is to evaluate the performance of three commonly used model fit indices when measurement invariance is tested in the context of multiple-group CFA analysis with categorical-ordered data. As applied researchers are increasingly aware of the importance of testing measurement invariance, as well as Likert-type scales are…
Descriptors: Goodness of Fit, Factor Analysis, Data, Monte Carlo Methods
Pere J. Ferrando; David Navarro-González; Fabia Morales-Vives – Educational and Psychological Measurement, 2025
The problem of local item dependencies (LIDs) is very common in personality and attitude measures, particularly in those that measure narrow-bandwidth dimensions. At the structural level, these dependencies can be modeled by using extended factor analytic (FA) solutions that include correlated residuals. However, the effects that LIDs have on the…
Descriptors: Scores, Accuracy, Evaluation Methods, Factor Analysis
Kim, Hyung Jin; Brennan, Robert L.; Lee, Won-Chan – Journal of Educational Measurement, 2020
In equating, smoothing techniques are frequently used to diminish sampling error. There are typically two types of smoothing: presmoothing and postsmoothing. For polynomial log-linear presmoothing, an optimum smoothing degree can be determined statistically based on the Akaike information criterion or Chi-square difference criterion. For…
Descriptors: Equated Scores, Sampling, Error of Measurement, Statistical Analysis
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Qian, Jiahe; Li, Shuhong – ETS Research Report Series, 2021
In recent years, harmonic regression models have been applied to implement quality control for educational assessment data consisting of multiple administrations and displaying seasonality. As with other types of regression models, it is imperative that model adequacy checking and model fit be appropriately conducted. However, there has been no…
Descriptors: Models, Regression (Statistics), Language Tests, Quality Control
Kush, Joseph M.; Konold, Timothy R.; Bradshaw, Catherine P. – Grantee Submission, 2021
Multilevel structural equation (MSEM) models allow researchers to model latent factor structures at multiple levels simultaneously by decomposing within- and between-group variation. Yet the extent to which the sampling ratio (i.e., proportion of cases sampled from each group) influences the results of MSEM models remains unknown. This paper…
Descriptors: Sampling, Structural Equation Models, Factor Structure, Monte Carlo Methods