NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Poom, Leo; af Wåhlberg, Anders – Research Synthesis Methods, 2022
In meta-analysis, effect sizes often need to be converted into a common metric. For this purpose conversion formulas have been constructed; some are exact, others are approximations whose accuracy has not yet been systematically tested. We performed Monte Carlo simulations where samples with pre-specified population correlations between the…
Descriptors: Meta Analysis, Effect Size, Mathematical Formulas, Monte Carlo Methods
Ke, Zijun; Zhang, Zhiyong – Grantee Submission, 2018
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such…
Descriptors: Correlation, Mathematical Formulas, Sampling, Monte Carlo Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Qian, Jiahe – ETS Research Report Series, 2017
The variance formula derived for a two-stage sampling design without replacement employs the joint inclusion probabilities in the first-stage selection of clusters. One of the difficulties encountered in data analysis is the lack of information about such joint inclusion probabilities. One way to solve this issue is by applying Hájek's…
Descriptors: Mathematical Formulas, Computation, Sampling, Research Design
Bulus, Metin – ProQuest LLC, 2017
In education, sample characteristics can be complex due to the nested structure of students, teachers, classrooms, schools, and districts. In the past, not many considerations were given to such complex sampling schemes in statistical power analysis. More recently in the past two decades, however, education scholars have developed tools to conduct…
Descriptors: Educational Research, Regression (Statistics), Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Everitt, B. S. – Multivariate Behavioral Research, 1981
Results show that the proposed sampling distribution of the test appears to be appropriate only for sample sizes above 50, and for data where the sample size is 10 times the number of variables. For such cases the power of the test is found to be fairly low. (Author/RL)
Descriptors: Mathematical Formulas, Maximum Likelihood Statistics, Monte Carlo Methods, Multivariate Analysis
Lord, Frederic M. – 1981
Transformations or equating of raw test scores on two or more forms of the same test are made interchangeable by empirical procedures deriving the standard error of an equipercentile equating for four different situations. Some numerical results are checked by Monte Carlo methods. Numerical standard errors are computed for two sets of real data.…
Descriptors: Educational Testing, Equated Scores, Error of Measurement, Mathematical Formulas
Newman, Isadore; And Others – 1979
A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…
Descriptors: Correlation, Mathematical Formulas, Monte Carlo Methods, Multiple Regression Analysis