Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 32 |
Descriptor
| Sample Size | 38 |
| Sampling | 38 |
| Statistical Inference | 28 |
| Statistical Analysis | 18 |
| Inferences | 11 |
| Computation | 9 |
| Probability | 9 |
| Error of Measurement | 8 |
| Reliability | 7 |
| Research Methodology | 7 |
| Simulation | 7 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Teachers | 2 |
| Practitioners | 1 |
| Researchers | 1 |
Location
| Australia | 2 |
| Belgium | 1 |
| Israel | 1 |
| Mexico | 1 |
| United Kingdom | 1 |
| United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| MacArthur Communicative… | 1 |
| National Assessment of… | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Makela, Susanna; Si, Yajuan; Gelman, Andrew – Grantee Submission, 2018
Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to…
Descriptors: Bayesian Statistics, Statistical Inference, Sampling, Probability
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2016
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Descriptors: Reliability, Computation, Statistical Analysis, Comparative Analysis
Paek, Insu – Educational and Psychological Measurement, 2016
The effect of guessing on the point estimate of coefficient alpha has been studied in the literature, but the impact of guessing and its interactions with other test characteristics on the interval estimators for coefficient alpha has not been fully investigated. This study examined the impact of guessing and its interactions with other test…
Descriptors: Guessing (Tests), Computation, Statistical Analysis, Test Length
Huang, Francis L. – Educational and Psychological Measurement, 2018
Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials…
Descriptors: Multivariate Analysis, Sampling, Statistical Inference, Data Analysis
Albano, Anthony D. – Journal of Educational Measurement, 2015
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
Descriptors: Equated Scores, Sample Size, Sampling, Statistical Inference
Braham, Hana Manor; Ben-Zvi, Dani – Statistics Education Research Journal, 2017
A fundamental aspect of statistical inference is representation of real-world data using statistical models. This article analyzes students' articulations of statistical models and modeling during their first steps in making informal statistical inferences. An integrated modeling approach (IMA) was designed and implemented to help students…
Descriptors: Foreign Countries, Elementary School Students, Statistical Inference, Mathematical Models
Inzunsa Cazares, Santiago – North American Chapter of the International Group for the Psychology of Mathematics Education, 2016
This article presents the results of a qualitative research with a group of 15 university students of social sciences on informal inferential reasoning developed in a computer environment on concepts involved in the confidence intervals. The results indicate that students developed a correct reasoning about sampling variability and visualized…
Descriptors: Qualitative Research, College Students, Inferences, Logical Thinking
Bennett, Kimberley Ann – Teaching Statistics: An International Journal for Teachers, 2015
Students may need explicit training in informal statistical reasoning in order to design experiments or use formal statistical tests effectively. By using scientific scandals and media misinterpretation, we can explore the need for good experimental design in an informal way. This article describes the use of a paper that reviews the measles mumps…
Descriptors: Statistical Analysis, Thinking Skills, Research Design, Data Interpretation
Beasley, T. Mark – Journal of Experimental Education, 2014
Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…
Descriptors: Statistical Analysis, Effect Size, Nonparametric Statistics, Statistical Inference
Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim – Journal of Experimental Education, 2014
A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…
Descriptors: Effect Size, Statistical Bias, Sample Size, Regression (Statistics)
Noll, Jennifer; Shaughnessy, J. Michael – Journal for Research in Mathematics Education, 2012
Sampling tasks and sampling distributions provide a fertile realm for investigating students' conceptions of variability. A project-designed teaching episode on samples and sampling distributions was team-taught in 6 research classrooms (2 middle school and 4 high school) by the investigators and regular classroom mathematics teachers. Data…
Descriptors: Sampling, Mathematics Teachers, Middle Schools, High Schools
Two Distinct Exploratory Behaviors in Decisions from Experience: Comment on Gonzalez and Dutt (2011)
Hills, Thomas T.; Hertwig, Ralph – Psychological Review, 2012
Gonzalez and Dutt (2011) recently reported that trends during sampling, prior to a consequential risky decision, reveal a gradual movement from exploration to exploitation. That is, even when search imposes no immediate costs, people adopt the same pattern manifest in costly search: early exploration followed by later exploitation. From this…
Descriptors: Decision Making, Models, Inferences, Sampling
Ishak, Noriah Mohd; Abu Bakar, Abu Yazid – World Journal of Education, 2014
Due to statistical analysis, the issue of random sampling is pertinent to any quantitative study. Unlike quantitative study, the elimination of inferential statistical analysis, allows qualitative researchers to be more creative in dealing with sampling issue. Since results from qualitative study cannot be generalized to the bigger population,…
Descriptors: Case Studies, Statistical Analysis, Sampling, Qualitative Research

Peer reviewed
Direct link
