Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 7 |
Descriptor
Monte Carlo Methods | 16 |
Sampling | 16 |
Statistical Distributions | 16 |
Sample Size | 9 |
Statistical Analysis | 5 |
Simulation | 4 |
Statistical Inference | 4 |
Statistical Studies | 4 |
Comparative Analysis | 3 |
Computer Simulation | 3 |
Estimation (Mathematics) | 3 |
More ▼ |
Source
Educational and Psychological… | 4 |
Grantee Submission | 3 |
Journal of Experimental… | 2 |
Applied Psychological… | 1 |
Measurement:… | 1 |
Author
Liu, Haiyan | 2 |
Qu, Wen | 2 |
Zhang, Zhiyong | 2 |
Abdul Haq | 1 |
Algina, James | 1 |
Bishara, Anthony J. | 1 |
Broodbooks, Wendy J. | 1 |
Delaney, Harold D. | 1 |
Divers, Jasmin | 1 |
Elmore, Patricia B. | 1 |
Fowler, Robert L. | 1 |
More ▼ |
Publication Type
Reports - Research | 11 |
Journal Articles | 8 |
Reports - Evaluative | 5 |
Speeches/Meeting Papers | 5 |
Education Level
Audience
Researchers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Abdul Haq – Measurement: Interdisciplinary Research and Perspectives, 2024
This article introduces an innovative sampling scheme, the median sampling (MS), utilizing individual observations over time to efficiently estimate the mean of a process characterized by a symmetric (non-uniform) probability distribution. The mean estimator based on MS is not only unbiased but also boasts enhanced precision compared to its simple…
Descriptors: Sampling, Innovation, Computation, Probability
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Multivariate Analysis, Statistical Distributions, Monte Carlo Methods
Qu, Wen; Liu, Haiyan; Zhang, Zhiyong – Grantee Submission, 2020
In social and behavioral sciences, data are typically not normally distributed, which can invalidate hypothesis testing and lead to unreliable results when being analyzed by methods developed for normal data. The existing methods of generating multivariate non-normal data typically create data according to specific univariate marginal measures…
Descriptors: Social Science Research, Statistical Distributions, Multivariate Analysis, Monte Carlo Methods
Natesan, Prathiba; Hedges, Larry V. – Grantee Submission, 2016
Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in SCDs, no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in…
Descriptors: Bayesian Statistics, Statistical Inference, Research Design, Models
Kang, Yoonjeong; Harring, Jeffrey R.; Li, Ming – Journal of Experimental Education, 2015
The authors performed a Monte Carlo simulation to empirically investigate the robustness and power of 4 methods in testing mean differences for 2 independent groups under conditions in which 2 populations may not demonstrate the same pattern of nonnormality. The approaches considered were the t test, Wilcoxon rank-sum test, Welch-James test with…
Descriptors: Comparative Analysis, Monte Carlo Methods, Statistical Analysis, Robustness (Statistics)
Bishara, Anthony J.; Hittner, James B. – Educational and Psychological Measurement, 2015
It is more common for educational and psychological data to be nonnormal than to be approximately normal. This tendency may lead to bias and error in point estimates of the Pearson correlation coefficient. In a series of Monte Carlo simulations, the Pearson correlation was examined under conditions of normal and nonnormal data, and it was compared…
Descriptors: Research Methodology, Monte Carlo Methods, Correlation, Simulation
Padilla, Miguel A.; Divers, Jasmin – Educational and Psychological Measurement, 2013
The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…
Descriptors: Sampling, Statistical Inference, Computation, Statistical Analysis
Delaney, Harold D.; Vargha, Andras – 2000
While violation of the homogeneity of variance assumption has received considerable attention, violation of the assumption of normally distributed data has not received as much attention. As a result, researchers may have the mistaken impression that as long as the assumptions of independence of observations and homogeneity of variance are…
Descriptors: Monte Carlo Methods, Sampling, Statistical Distributions

Fowler, Robert L. – Applied Psychological Measurement, 1992
A Monte Carlo simulation explored how to optimize power in the extreme groups strategy when sampling from nonnormal distributions. Results show that the optimum percent for the extreme group selection was approximately the same for all population shapes, except the extremely platykurtic (uniform) distribution. (SLD)
Descriptors: Construct Validity, Equations (Mathematics), Mathematical Models, Monte Carlo Methods

You, Soon-Hyung; Stone-Romero, Eugene F. – Educational and Psychological Measurement, 1996
To clarify the findings of R. Gillett (1991) about the inequality of the means of test scores of minority and majority examinees, the standard errors of the quota-selected sample means and the sampling distribution of these means were studied through Monte Carlo simulation. Results explain that the quota selection inequality results from…
Descriptors: Error of Measurement, Minority Groups, Monte Carlo Methods, Sampling
Williams, Janice E. – 1987
A Monte Carlo study was done to determine the adequate sample size for quasi-experimental regression studies, which compare regression lines for two groups and estimate their point of intersection. Populations of 1,000 subjects in each of two groups were constructed (using random normal deviates) to yield equivalent regression lines of opposite…
Descriptors: Computer Simulation, Estimation (Mathematics), Monte Carlo Methods, Quasiexperimental Design

Penfield, Douglas A. – Journal of Experimental Education, 1994
Type I error rate and power for the t test, Wilcoxon-Mann-Whitney test, van der Waerden Normal Scores, and Welch-Aspin-Satterthwaite (W) test are compared for two simulated independent random samples from nonnormal distributions. Conditions under which the t test and W test are best to use are discussed. (SLD)
Descriptors: Monte Carlo Methods, Nonparametric Statistics, Power (Statistics), Sample Size

Broodbooks, Wendy J.; Elmore, Patricia B. – Educational and Psychological Measurement, 1987
The effects of sample size, number of variables, and population value of the congruence coefficient on the sampling distribution of the congruence coefficient were examined. Sample data were generated on the basis of the common factor model, and principal axes factor analyses were performed. (Author/LMO)
Descriptors: Factor Analysis, Mathematical Models, Monte Carlo Methods, Predictor Variables
Olejnik, Stephen; Algina, James – 1987
The purpose of this study was to develop a single procedure for comparing population variances which could be used for distribution forms. Bootstrap methodology was used to estimate the variability of the sample variance statistic when the population distribution was normal, platykurtic and leptokurtic. The data for the study were generated and…
Descriptors: Comparative Analysis, Estimation (Mathematics), Measurement Techniques, Monte Carlo Methods
Tryon, Warren W. – 1984
A normally distributed data set of 1,000 values--ranging from 50 to 150, with a mean of 50 and a standard deviation of 20--was created in order to evaluate the bootstrap method of repeated random sampling. Nine bootstrap samples of N=10 and nine more bootstrap samples of N=25 were randomly selected. One thousand random samples were selected from…
Descriptors: Computer Simulation, Estimation (Mathematics), Higher Education, Monte Carlo Methods
Previous Page | Next Page ยป
Pages: 1 | 2