NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)8
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Amy Kamarainen; Shari Metcalf; Tina Grotzer; Craig Brimhall; Chris Dede – International Journal of Designs for Learning, 2016
We describe a mobile augmented reality (AR) experience called Atom Tracker designed to help middle school students better understand the cycling of matter in ecosystems with a focus on the concept of conservation of matter and the processes of photosynthesis and respiration. Location-based AR allows students to locate virtual "hotspots,"…
Descriptors: Middle School Students, Secondary School Science, Conservation (Concept), Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel – Journal of Chemical Education, 2014
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Descriptors: Computation, Introductory Courses, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I. – Journal of Chemical Education, 2014
This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…
Descriptors: Undergraduate Students, Chemistry, Spectroscopy, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien – Teaching Science, 2014
Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…
Descriptors: Thinking Skills, Magnets, Science Education, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Chiang, Harry; Robinson, Lucy C.; Brame, Cynthia J.; Messina, Troy C. – Biochemistry and Molecular Biology Education, 2013
Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems.…
Descriptors: Molecular Biology, Computer Simulation, Science Laboratories, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Bowen, Alec S.; Reid, Daniel R.; Koretsky, Milo D. – Chemical Engineering Education, 2015
In this project, we explore the use of threshold concept theory as a design basis for development of Interactive Virtual Laboratories in thermodynamics. Thermodynamics is a difficult subject for chemical and biological engineering students to master. One reason for the difficulty is the diverse and challenging set of threshold concepts that they…
Descriptors: Thermodynamics, Science Laboratories, Computer Simulation, Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene – Journal of Chemical Education, 2014
In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…
Descriptors: Computer Simulation, Models, Science Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K. – Chemistry Education Research and Practice, 2013
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
Descriptors: Inquiry, Science Activities, Chemistry, Computer Simulation
Peer reviewed Peer reviewed
Birk, James P., Ed. – Journal of Chemical Education, 1990
Four microcomputer applications are presented including: "Computer Simulated Process of 'Lead Optimization': A Student-Interactive Program,""A PROLOG Program for the Generation of Molecular Formulas,""Determination of Inflection Points from Experimental Data," and "LAOCOON PC: NMR Simulation on a Personal Computer." Software, availability,…
Descriptors: Atomic Structure, Chemical Analysis, Chemistry, College Science
Peer reviewed Peer reviewed
Sperandeo-Mineo, R. M.; Tripi, G. – Physics Education, 1987
Describes some simple computer programs designed to simulate the molecular dynamics of two-dimensional systems with a Lennard-Jones interaction potential. Discusses the use of the software in introductory physics courses at the high school and college level. (TW)
Descriptors: College Science, Computer Assisted Instruction, Computer Simulation, Computer Uses in Education
Peer reviewed Peer reviewed
Kinderman, Jesusa Valdez – Physics Teacher, 1992
Describes a computer simulation of the Compton effect designed to lead students to discover (1) the relationship of the electron's final kinetic energy to its angle of scattering and (2) the relationship between the scattering angles of the outgoing electron and photon. (MDH)
Descriptors: Computer Assisted Instruction, Computer Simulation, Discovery Learning, Energy