Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 27 |
Descriptor
College Science | 107 |
Computer Uses in Education | 107 |
Science Activities | 107 |
Higher Education | 71 |
Science Instruction | 61 |
Science Education | 58 |
Chemistry | 50 |
Secondary School Science | 42 |
Laboratory Procedures | 32 |
Computer Software | 31 |
Teaching Methods | 31 |
More ▼ |
Source
Author
Publication Type
Education Level
Higher Education | 28 |
Postsecondary Education | 17 |
High Schools | 6 |
Secondary Education | 4 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Stephens, Lisa I.; Mauzeroll, Janine – Journal of Chemical Education, 2019
One of the unique advantages of electrochemistry is that the relationship between thermodynamics and kinetics is quantitative, which is the basis of voltammetry. Mathematical models of electrochemical systems take advantage of this relationship to predict the effect of changing a system property (e.g., concentration, scan rate, or rate constant)…
Descriptors: Chemistry, Mathematical Models, Thermodynamics, Kinetics
Domenico, Janna; Schneider, Alexis M.; Sohlberg, Karl – Journal of Chemical Education, 2019
In this work, two exercises are described that are designed to teach students about the evolution and behavior of the electronic bands of graphene and bilayer graphene. These exercises involve performing extended Hückel molecular orbital theory calculations on polyacenes and polycyclic aromatic hydrocarbons. In the first exercise, students…
Descriptors: Chemistry, College Science, Science Instruction, Science Activities
Hadiati, Soka; Kuswanto, Heru; Rosana, Dadan; Pramuda, Adi – International Journal of Instruction, 2019
This study aims to examine students' reasoning based on the model in each laboratory work style and find the effect on scientific attitude and student activity. This study uses a quantitative approach with the experimental method. The study was conducted in three classes with different lab work styles. Arduino and sensors were used as a…
Descriptors: Logical Thinking, Scientific Attitudes, Laboratory Procedures, Open Source Technology
Diget, C. Aa.; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C. – Physics Education, 2017
We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using LEGO® bricks. The activity, "binding blocks", demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26000 LEGO® bricks. It integrates A-Level and GCSE…
Descriptors: Science Instruction, Scientific Concepts, Nuclear Energy, Nuclear Physics
Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin – Journal of Chemical Education, 2014
We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…
Descriptors: Spreadsheets, Equations (Mathematics), Science Instruction, Chemistry
Rubin, Samuel J.; Abrams, Binyomin – Journal of Chemical Education, 2015
Despite their technological savvy, most students entering university lack the necessary computer skills to succeed in a quantitative analysis course, in which they are often expected to input, analyze, and plot results of experiments without any previous formal education in Microsoft Excel or similar programs. This lack of formal education results…
Descriptors: Statistical Analysis, College Science, Science Instruction, Spreadsheets
Daniels, David; Berkes, Charlotte; Nekoie, Arjan; Franco, Jimmy – Journal of Chemical Education, 2015
A drug discovery project has been successfully implemented in a first-year general, organic, and biochemistry (GOB) health science course and second-year organic undergraduate chemistry course. This project allows students to apply the fundamental principles of chemistry and biology to a problem of medical significance, practice basic laboratory…
Descriptors: Communicable Diseases, Organic Chemistry, Biochemistry, College Science
Riley, Shelley R. Rabel – Journal of Chemical Education, 2015
A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…
Descriptors: Chemistry, Science Experiments, College Science, Science Instruction
Timberlake, Todd K. – Astronomy Education Review, 2013
This paper describes a series of activities in which students investigate and use the Ptolemaic, Copernican, and Tychonic models of planetary motion. The activities guide students through using open source software to discover important observational facts, learn the necessary vocabulary, understand the fundamental properties of different…
Descriptors: Astronomy, Science History, Science Instruction, College Science
Ochterski, Joseph W. – Journal of Chemical Education, 2014
This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…
Descriptors: Science Instruction, Chemistry, Computer Software, Computer Uses in Education
Gill, Robert M.; Burin, Michael J. – Physics Teacher, 2013
College and university general education (GE) classes are designed to broaden the understanding of all college and university students in areas outside their major interest. However, most GE classes are lecture type and do not facilitate hands-on experimental or observational activities related to the specific subject matter. Utilizing astronomy…
Descriptors: Astronomy, Science Instruction, Introductory Courses, College Science
Baseden, Kyle A.; Tye, Jesse W. – Journal of Chemical Education, 2014
Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…
Descriptors: Demonstrations (Educational), Computation, Science Activities, Scientific Concepts
McCabe, Declan J. – American Biology Teacher, 2014
This exercise demonstrates the principle of parsimony in constructing cladograms. Although it is designed using mammalian cranial characters, the activity could be adapted for characters from any group of organisms. Students score categorical traits on skulls and record the data in a spreadsheet. Using the Mesquite software package, students…
Descriptors: Science Activities, Science Laboratories, Biology, Evolution
Gonza´lez-Go´mez, David; Rodríguez, Diego Airado; Can~ada-Can~ada, Florentina; Jeong, Jin Su – Journal of Chemical Education, 2015
Currently, there are a number of educational applications that allow students to reinforce theoretical or numerical concepts through an interactive way. More precisely, in the field of the analytical chemistry, MATLAB has been widely used to write easy-to-implement code, facilitating complex performances and/or tedious calculations. The main…
Descriptors: Science Education, Secondary School Science, College Science, High School Students
Chiang, Harry; Robinson, Lucy C.; Brame, Cynthia J.; Messina, Troy C. – Biochemistry and Molecular Biology Education, 2013
Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems.…
Descriptors: Molecular Biology, Computer Simulation, Science Laboratories, College Science