NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)2
Since 2006 (last 20 years)67
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of…1
What Works Clearinghouse Rating
Showing 1 to 15 of 89 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Parker, Carolyn; Kruchten, Catherine; Moshfeghian, Audrey – Afterschool Matters, 2017
The STEM Achievement in Baltimore Elementary Schools (SABES) program is a community partnership initiative that includes both in-school and afterschool STEM education for grades 3-5. It was designed to broaden participation and achievement in STEM education by bringing science and engineering to the lives of low-income urban elementary school…
Descriptors: Student Projects, Urban Schools, STEM Education, Science Course Improvement Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Huffman, Tanner; Burke, Barry – Technology and Engineering Teacher, 2015
Engineering byDesign™ (EbD) provides teachers and students with reflective, formative, and comprehensive summative assessment tools throughout the curriculum. Each lesson, unit, and course is created with a list of essential questions that are meant to guide students to a deeper understanding of national standards across the STEM domains (STL,…
Descriptors: Technological Literacy, Engineering Education, Student Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bartholomew, Scott – Technology and Engineering Teacher, 2015
STEM (Science, Technology, Engineering, and Math) is a buzzword in America (Ames, 2013; Woodruff, 2013). With recent pushes from the federal government (Obama, 2013) the educational landscape is changing, with an increased emphasis on STEM (Noddings, 2013; Obama, 2013). However, a clear definition of who teaches each aspect of STEM does not exist…
Descriptors: STEM Education, Teacher Qualifications, Science Education History, Academic Standards
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denson, Cameron D. – Journal of Technology Education, 2017
This article examines the Mathematics, Engineering, Science Achievement (MESA) program and investigates its impact on underrepresented student populations. MESA was started in California during the 1970s to provide pathways to science, technology, engineering, and mathematics careers for underrepresented students and represents an exemplar model…
Descriptors: STEM Education, Science Achievement, Mixed Methods Research, Self Efficacy
Lehman, James D.; Ertmer, Peggy A.; Bessenbacher, Ann M. – Educational Technology, 2015
Built as one of 60+ hubs on the HUBzero platform, STEMEdhub was developed in 2011 as a resource for research, education, and collaboration in STEM education. The hub currently supports 82 different groups. In this article, the authors describe two specific groups (SLED and AAU) that are taking advantage of numerous communication and resource tools…
Descriptors: STEM Education, Technology Uses in Education, Educational Resources, Science Course Improvement Projects
Robelen, Erik W. – Education Week, 2013
When science, technology, engineering and mathematics (STEM) education is discussed in the K-12 sphere, it often seems like shorthand for mathematics and science, with perhaps a nod to technology and even less, if any, real attention to engineering. But recent developments signal that the "e" in STEM may be gaining a firmer foothold at…
Descriptors: Elementary Secondary Education, Grade 8, STEM Education, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Fantz, Todd D.; Grant, Melva R. – Technology and Engineering Teacher, 2013
The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…
Descriptors: STEM Education, Science Interests, Science Course Improvement Projects, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Mannion, Ken – Education in Science, 2012
During 2011, a team from the Centre for Science Education (CSE) worked with four local schools and five Sheffield city region engineering organisations on a project to identify ways to increase the input into young people's awareness of engineering that comes from activities they do in school science. The project also tested an hypothesis that…
Descriptors: Student Attitudes, Engineering Education, Science Course Improvement Projects, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James – Multicultural Education & Technology Journal, 2013
Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…
Descriptors: Electronic Learning, Distance Education, Computer Simulation, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Hance, Dennis – Tech Directions, 2012
During the fall semester of 2010, mechanical engineering students from Edison State Community College and Wright State University shared their skills and knowledge with students from the Upper Valley JVS (UVJVS) pre-engineering technology program in a highly motivating robotics activity. The activity culminated in 47 teams from regional high…
Descriptors: Competition, Engineering Technology, Robotics, College School Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen – Journal of Pre-College Engineering Education Research, 2013
The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…
Descriptors: Engineering Technology, Engineering Education, Design, Exhibits
Peer reviewed Peer reviewed
Direct linkDirect link
Hargrove-Leak, Sirena – Journal of STEM Education: Innovations and Research, 2012
The engineering profession continues to struggle to attract new talent, in part because it is not well understood by the general public and often viewed in a negative light. Therefore, engineering professionals have called for new approaches promote better understanding and change negative perceptions. One suggested approach is for engineering…
Descriptors: Nonmajors, Engineering Education, Outcomes of Education, Course Descriptions
Peer reviewed Peer reviewed
Direct linkDirect link
Wood, Anson – Tech Directions, 2011
Living in the Adirondack Park and being an avid outdoorsman has often resulted in the author's love of the outdoors working its way into class projects. In 2010, the author gave a group of 25 students in grades 9-12 a challenge that required them to design and construct a prototype inexpensive, lightweight kayak for backpackers and fisherman. In…
Descriptors: Engineering Education, Engineering Technology, Science Activities, Science Course Improvement Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav – IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012
Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…
Descriptors: Engineering Education, Computer Software, Integrated Curriculum, Computer Simulation
Shen, Hui – Online Submission, 2011
To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…
Descriptors: Engineering Education, Elective Courses, Biomechanics, Engineering
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6