Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Algorithms | 30 |
Science Education | 30 |
Chemistry | 28 |
Higher Education | 22 |
Problem Solving | 21 |
College Science | 20 |
Science Instruction | 12 |
Teaching Methods | 12 |
Learning Strategies | 8 |
Secondary Education | 8 |
Secondary School Science | 8 |
More ▼ |
Source
Author
Bodner, George M. | 3 |
Frank, David V. | 2 |
Niaz, Mansoor | 2 |
Amanda M. Lines | 1 |
Atanu Bhattacharya | 1 |
Axel Langner | 1 |
Baker, Claire A. | 1 |
Barrufet, Maria A. | 1 |
Binoy Paine | 1 |
Carter, Carolyn S. | 1 |
Collins, B. A. | 1 |
More ▼ |
Publication Type
Journal Articles | 23 |
Reports - Descriptive | 12 |
Reports - Research | 11 |
Opinion Papers | 6 |
Guides - Classroom - Teacher | 3 |
Speeches/Meeting Papers | 3 |
Information Analyses | 1 |
Reports - General | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Practitioners | 14 |
Researchers | 6 |
Teachers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Group Assessment of Logical… | 1 |
Group Embedded Figures Test | 1 |
What Works Clearinghouse Rating
Axel Langner; Lea Sophie Hain; Nicole Graulich – Journal of Chemical Education, 2025
Often, eye-tracking researchers define areas of interest (AOIs) to analyze eye-tracking data. Although AOIs can be defined with systematic methods, researchers in organic chemistry education eye-tracking research often define them manually, as the semantic composition of the stimulus must be considered. Still, defining appropriate AOIs during data…
Descriptors: Organic Chemistry, Science Education, Eye Movements, Educational Research
Atanu Bhattacharya; Kalyan Dasgupta; Binoy Paine – Journal of Chemical Education, 2024
In this paper, we present a computational chemistry project that demonstrates the quantum dynamics of a free particle, using both classical and quantum computing algorithms. This project can be used in a computational quantum chemistry course in which the instructor introduces quantum computing. Students write their own programs to simulate the…
Descriptors: Chemistry, Science Education, Quantum Mechanics, Computer Science
Hope E. Lackey; Rachel L. Sell; Gilbert L. Nelson; Thomas A. Bryan; Amanda M. Lines; Samuel A. Bryan – Journal of Chemical Education, 2023
The methodology and mathematical treatment of several classic multivariate methods for the analysis of spectroscopic data is demonstrated in a straightforward way that can be used as a basis for teaching an undergraduate introductory course on chemometric analysis. The multivariate techniques of classical least-squares (CLS), principal component…
Descriptors: Chemistry, Data Analysis, Optics, Lighting

Reid, Norman; Yang, Mei-Jung – Research in Science and Technological Education, 2002
Offers a simple classification of problems and seeks to explore the many factors that may be important in the successful solving of problems. Considers the place of procedures and algorithms. Solving open-ended problems is extremely important in education and offering learners experience with this in a group work context is a helpful way forward.…
Descriptors: Algorithms, Chemistry, Problem Solving, Science Education

Niaz, Mansoor – Science Education, 1995
Describes a study with the main objective of constructing models based on strategies students use to solve chemistry problems and to show that these models form sequences of progressive transitions termed "problemshifts" that increase the explanatory/heuristic power of the model. Results implies that the relationship between algorithmic…
Descriptors: Algorithms, Chemistry, Concept Formation, Models

Schwartz, Lowell M. – Journal of Chemical Education, 1985
Shows that the rules of thumb for propagating significant figures through arithmetic calculations frequently yield misleading results. Also describes two procedures for performing this propagation more reliably than the rules of thumb. However, both require considerably more calculational effort than do the rules. (JN)
Descriptors: Algorithms, Chemistry, College Science, Computation
Computers in the Undergraduate Physical Chemistry Laboratory: A Chemistry/Numerical Methods Approach

Norris, A. C.; Collins, B. A. – International Journal of Mathematical Education in Science and Technology, 1974
Descriptors: Algorithms, Chemistry, College Science, Computers

Still, Ebbe; Sara, Rolf – Journal of Chemical Education, 1977
Presents compact algorithms, suitable for use with hand held calculators, for the calculation of potentiometric titration curves. (SL)
Descriptors: Algorithms, Calculators, Chemical Reactions, Chemistry

Knudson, George E.; Nimrod, Dale – Journal of Chemical Education, 1977
Presents an exact equation for calculating the volume of titrant as a function of the hydrogen ion concentration suitable for calculation on a hand held calculator. (SL)
Descriptors: Algorithms, Calculators, Chemical Reactions, Chemistry
Coscarelli, William C.; And Others – 1976
Ninety students in an introductory chemistry class were divided into three groups to test the power of algorithms to increase logical thinking abilities. The experimental group received approximately 10 hours of laboratory instruction based on the use of procedural algorithms. Experiment and control groups were tested for logical thinking…
Descriptors: Algorithms, Chemistry, College Science, Educational Research

Coulter, David – School Science and Mathematics, 1981
A study to investigate one of the mechanisms teachers may use to convince themselves incorrectly that students have learned science concepts requiring formal operational ability is presented. The investigation indicates instructors may actually teach and test for memorization of algorithms rather than understanding. (MP)
Descriptors: Algorithms, Chemistry, Educational Research, Learning Theories

Pushkin, David B. – Journal of Chemical Education, 1998
Addresses the distinction between conceptual and algorithmic learning and the clarification of what is meant by a second-tier student. Explores why novice learners in chemistry and physics are able to apply algorithms without significant conceptual understanding. (DDR)
Descriptors: Algorithms, Chemistry, Cognitive Psychology, Concept Formation

Baker, Claire A.; Frank, David V. – Hoosier Science Teacher, 1988
Defines one approach to problem solving in terms of student use of algorithms to find their solutions and gives examples. Discusses how problems and algorithms relate to each other. Describes strategies for teaching problem solving using algorithms. (CW)
Descriptors: Algorithms, Chemistry, Cognitive Development, Computation

Moebs, W. D.; Haglund, E. A. – Journal of Chemical Education, 1976
Presents a computational method based on a Monte Carlo generation of a large number of chemical reactions. The reactions are allowed to proceed on the basis of relative probabilities. (MLH)
Descriptors: Algorithms, Chemical Reactions, Chemistry, College Science

Eubank, Philip T.; Barrufet, Maria A. – Chemical Engineering Education, 1988
Describes an algorithm that provides more rapid convergence for more complicated forms of phase separation requiring the use of a digital computer. Demonstrates that this "inside-out" algorithm remains efficient for determination of the equilibrium states for any type of phase transition for a binary system. (CW)
Descriptors: Algorithms, Chemical Engineering, Chemistry, College Science
Previous Page | Next Page ยป
Pages: 1 | 2