NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Binz, Steven – Physics Teacher, 2021
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's Smart Cart, in combination with student-owned smartphones and free apps, has opened a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper, we demonstrate the simplicity,…
Descriptors: Handheld Devices, Science Experiments, Physics, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo – Physics Education, 2017
The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…
Descriptors: Science Instruction, Physics, Science Experiments, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Vollmer, Michael; Möllmann, Klaus-Peter – Physics Education, 2018
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…
Descriptors: Physics, Science Education, Motion, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Davies, Gary B. – Physics Education, 2017
Carrying out classroom experiments that demonstrate Boyle's law and Gay-Lussac's law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow…
Descriptors: Science Instruction, Science Experiments, Physics, Educational Technology
Vacha, T. H. – 1984
The Rockwell AIM 65 is recommended for use in physics laboratories. Among advantages cited are that the basic board can be purchased customized; for example, it can be purchased with or without a printer, power supply, extra memory, and other items. In addition, the computer is basically designed to control equipment and take data from peripheral…
Descriptors: Acceleration (Physics), College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Mishima, Nobuhiko; And Others – American Journal of Physics, 1980
Describes the use of a microcomputer in studying a model experiment (Brownian particles colliding with thermal particles). A flow chart and program for the experiment are provided. Suggests that this experiment may foster a deepened understanding through mutual dialog between the student and computer. (SK)
Descriptors: College Science, Computer Oriented Programs, Computer Programs, Computer Science
Peer reviewed Peer reviewed
Riggi, F. – American Journal of Physics, 1981
Different programs have been developed for the simulation of physics experiments by using TI-57 programmable calculators. Two of these programs, describing the simulation of a successive radioactive decay and the random motion of a gas molecule, are presented. (Author/SK)
Descriptors: Calculators, College Science, Computer Assisted Instruction, Computer Oriented Programs
Ford, Bruce – Classroom Computer News, 1983
Microcomputer-based instrumentation packages enable computers to collect continuous analog data, convert data to digital form for processing, and display results on monitor. Discusses classroom advantages of these packages, describes one package for teaching harmonic motion, and provides a list of currently available packages (including vendor and…
Descriptors: College Science, Computer Oriented Programs, Computer Programs, Electronic Equipment
Peer reviewed Peer reviewed
Huggins, Elisha R.; Lelek, Jeffrey J. – American Journal of Physics, 1979
Describes a series of laboratory experiments and computer simulations of the motion of electrons in electric and magnetic fields. These experiments, which involve an inexpensive student-built electron gun, study the electron mean free path, magnetic focusing, and other aspects. (Author/HM)
Descriptors: College Science, Computer Oriented Programs, Electricity, Electronics
Peer reviewed Peer reviewed
Jenkins, Randy A. – Physics Teacher, 1993
Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)
Descriptors: Acceleration (Physics), Computation, Computer Oriented Programs, Computer Uses in Education