NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, Daniel P.; Phillips, Adam; Ludowieg, Herbert; Swihart, Sarah; Autschbach, Jochen; Zurek, Eva – Journal of Chemical Education, 2019
A computational laboratory experiment investigating molecular models for hexagonal boron-carbon-nitrogen sheets (h-BCN) was developed and employed in an upper-level undergraduate chemistry course. Students used the Avogadro user interface for molecular editing and the WebMO interface for the quantum computational workflow. Density functional…
Descriptors: Computer Uses in Education, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sales, Eric S.; Silveira, Gustavo P. – Journal of Chemical Education, 2015
Lactone-size identification of [subscript D]-ribonolactone derivatives has been debated for four decades due to complex lactone-ring rearrangements and acetal migration. This laboratory experiment for an upper-division undergraduate organic chemistry laboratory course describes a fast and reliable assignment of lactone-size derivatives from…
Descriptors: Science Instruction, Spectroscopy, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
McDougal, Owen M.; Cornia, Nic; Sambasivarao, S. V.; Remm, Andrew; Mallory, Chris; Oxford, Julia Thom; Maupin, C. Mark; Andersen, Tim – Biochemistry and Molecular Biology Education, 2014
DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that allows users to utilize a readily accessible computational tool to explore biomolecules and their interactions. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular…
Descriptors: Science Instruction, Computer Software, Educational Technology, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva – Journal of Chemical Education, 2013
A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…
Descriptors: Science Instruction, College Science, Chemistry, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cepic, Mojca – European Journal of Physics Education, 2012
The introduction of teaching about liquid crystals is discussed from several points of view: the rationale why to teach them, the basics about liquid crystals or what the teacher should teach about them, the fundamental pre-knowledge of students required, the set of experiments accompanying the teaching and the brief report on the already…
Descriptors: Science Instruction, Science Experiments, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Beddard, Godfrey S. – Journal of Chemical Education, 2011
Thermodynamic quantities such as the average energy, heat capacity, and entropy are calculated using a Monte Carlo method based on the Metropolis algorithm. This method is illustrated with reference to the harmonic oscillator but is particularly useful when the partition function cannot be evaluated; an example using a one-dimensional spin system…
Descriptors: Thermodynamics, Scientific Concepts, Calculus, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zable, Anthony C. – Physics Teacher, 2010
The concepts of Newtonian mechanics, fluids, and ideal gas law physics are often treated as separate and isolated topics in the typical introductory college-level physics course, especially in the laboratory setting. To bridge these subjects, a simple experiment was developed that utilizes computer-based data acquisition sensors and a digital gram…
Descriptors: Thermodynamics, Mechanics (Physics), Scientific Concepts, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath – Journal of Chemical Education, 2011
We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…
Descriptors: Chemistry, Undergraduate Students, College Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Manallack, David T.; Chalmers, David K.; Yuriev, Elizabeth – Journal of Chemical Education, 2010
The topics of molecular modeling and drug design are studied in a medicinal chemistry course. The recently reported structures of several G protein-coupled receptors (GPCR) with bound ligands have been used to develop a simple computer-based experiment employing molecular-modeling software. Knowledge of the specific interactions between a ligand…
Descriptors: Undergraduate Study, Biochemistry, College Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Paul D. – Journal of Chemical Education, 2010
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
Descriptors: Multiple Regression Analysis, Molecular Structure, Science Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Garg, Amit; Sharma, Reena; Dhingra, Vishal – European Journal of Physics Education, 2010
In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…
Descriptors: Undergraduate Study, College Science, Science Instruction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
La Rocca, Paola; Riggi, Francesco – European Journal of Physics, 2009
The absorption of beta rays from a radioactive source in different materials was investigated by the use of a simple setup based on a Geiger counter and a set of absorber sheets. The number of electrons traversing the material was measured as a function of its thickness. Detailed GEANT simulations were carried out to reproduce the obtained…
Descriptors: Undergraduate Study, College Science, Science Instruction, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima – Chemical Engineering Education, 2009
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Descriptors: Computer Software, Computer Literacy, Problem Solving, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S. – Journal of Chemical Education, 2008
Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…
Descriptors: Advanced Courses, Chemistry, Molecular Structure, Science Instruction
Previous Page | Next Page ยป
Pages: 1  |  2