NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
D'Anna, Michele; Fuchs, Hans U.; Corni, Federico – Physics Education, 2021
A quantitative experiment where we measure the acceleration of spheres of radius "R" rolling on an inclined U-shaped profile of width "2D" is presented. For a given inclination, we examine the behaviour of four solid spheres having different diameters; in contrast to what is usually assumed to be the case, the experimental…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Bassichis, William H. – Physics Teacher, 2019
Most springs do not simply obey Hooke's law because they are constructed to have an initial tension, which must be overcome before normal elongation occurs. This property, well known to engineers, is universally neglected in elementary physics courses. In particular, the standard simple harmonic motion experiment omits any discussion of this…
Descriptors: Physics, Science Instruction, Scientific Principles, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Suárez, Álvaro; Baccino, Daniel; Martí, Arturo C. – Physics Education, 2019
Simple experiments for which differential equations cannot be solved analytically can be addressed using an effective model that satisfactorily reproduces the experimental data. In this work, the 1D kinematics of a remote-control model (toy) car was studied experimentally and its dynamical equation modelled. In the experiment, maximum power was…
Descriptors: Models, Motion, Video Technology, Equations (Mathematics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Trudel, Louis; Métioui, Abdeljalil – International Baltic Symposium on Science and Technology Education, 2019
The relative speed concept was chosen since it is linked with the relative nature of motion and it is likely that the students would harbor many alternative conceptions about it. The research objective was to identify the various ways students conceive relative motion. Qualitative data collected in various forms of representation received a…
Descriptors: High School Students, Secondary School Science, Models, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua – Physics Education, 2018
A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…
Descriptors: Kinetics, Science Instruction, Models, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Ribeiro, Jair Lúcio Prados – Physics Teacher, 2016
A disco ball is a spherical object covered with small plane mirrors. When light reflects on these mirrors, it is scattered in many directions, producing a novel effect. The mirror globe is usually set to rotate, creating a profusion of moving spots (Fig. 1). In this article, we present a geometrical description of the movement of these spots and…
Descriptors: Light, Geometric Concepts, Optics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Menger, Fredric M.; Rizvi, Syed A. A. – Physics Education, 2016
The motions of Newton's cradle, consisting of several steel balls hanging side-by-side, have been analysed in terms of a sound pulse that travels via points of contact among the balls. This presupposes a focused energy beam. When the pulse reaches the fifth and final ball, the energy disperses and dislocates the ball with a trajectory equivalent…
Descriptors: Physics, Motion, Kinetics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Beichen; Su, Jun; Wang, Weiguo – Physics Education, 2018
Cosmic expansion is an important concept in astronomy. For ease of understanding, astronomers generally draw an analogy between cosmic expansion and the expansion of a spherical surface in 3D space. This study theoretically and experimentally investigates the laws governing the motion of particles on the surface of a balloon during expansion.…
Descriptors: Physics, Science Instruction, Astronomy, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, P. Sean; Plumley, Courtney L.; Hayes, Meredith L. – Science and Children, 2017
This column provides ideas and techniques to enhance your science teaching. This month's issue discusses how children think about the small-particle model of matter. What Richard Feynman referred to as the "atomic hypothesis" is perhaps more familiar to us as the small-particle model of matter. In its most basic form, the model states…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Grade 5
Peer reviewed Peer reviewed
Direct linkDirect link
Rovšek, Barbara; Guštin, Andrej – Physics Education, 2018
An astronomy "experiment" composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets' circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along…
Descriptors: Motion, Scientific Concepts, Scientific Principles, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Benacka, Jan – Physics Education, 2017
This paper gives an account of an experiment in which thirty-three high school students of ages 17-19 developed spreadsheet numerical models of satellite and space probe motion. The models are free to download. A survey was carried out to find out the students' opinion of the lessons.
Descriptors: Science Instruction, High Schools, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Janssen, Paul; Janssens, Ewald – Physics Teacher, 2015
To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…
Descriptors: Physics, Science Experiments, College Freshmen, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Biezeveld, Hubert – Physics Teacher, 2012
It was obvious long ago that for mechanical behavior a gravitational field and an accelerating frame of reference are equivalent. Or in other words: it is impossible to decide whether you are in an accelerating elevator or in a closed room on a planet with a different value of "g". In the first section of this article I will describe a simple…
Descriptors: Physics, Motion, Science Experiments, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
de Izarra, Charles – European Journal of Physics, 2012
With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…
Descriptors: College Science, Science Instruction, Motion, Mechanics (Physics)
Previous Page | Next Page »
Pages: 1  |  2