NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 46 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Wegener, Margaret; Gurung, Som – Physics Education, 2022
In this paper, a simple method is described for visually demonstrating that the wavelength of light reduces when entering a medium of higher refractive index. When a violet laser (405 nm) is reflected off the surface of a Blu-ray disc (track spacing 320 nm) diffraction cannot occur since the wavelength is greater than the track spacing. However,…
Descriptors: Science Instruction, Physics, Light, Lasers
Peer reviewed Peer reviewed
Direct linkDirect link
Nieh, Hwa-Ming; Chen, Huai-Yi – Physics Teacher, 2023
The Arduino microcontroller is currently one of the favorite tools of makers, and many teachers have used it in teaching or experiments. In addition, light-emitting diode (LED) smart lighting is the worldwide trend in lighting. There are many teaching demonstrations or applications of color addition using LEDs. Furthermore, the Internet of Things…
Descriptors: Science Experiments, Light, Color, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Yu; Kim, Hee Ra; Ahn, Yu Jin; Kim, Jung Bog – Physics Teacher, 2022
The laser pointer has been widely used to demonstrate some simple optics phenomena, like reflection, refraction, total reflection, and diffraction. However, the rays of laser light cannot be seen in the air because the scattered light is too weak. Many physics teachers use milk or smoke to visualize rays of laser light in physics labs, but it is…
Descriptors: Science Experiments, Physics, Optics, Light
Peer reviewed Peer reviewed
Direct linkDirect link
Hanisch, C.; Ziese, M.; Oehme, W. – Physics Teacher, 2021
White light refracted by a glass edge or a prism might be split into the colors of the rainbow but, when restricted by a suitable arrangement of edges, might also yield a sequence of colors complementary to the rainbow. We studied the creation of these color fields experimentally with a setup consisting of RGB light-emitting diodes that cover all…
Descriptors: Science Instruction, Light, Color, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Bestari, L. F.; Sarwanto; Pujayanto; Syam, W. P.; Harjunowibowo, D. – Physics Education, 2022
Light spectrum dispersion is an exciting subject in science because of its beautiful atmospheric colour phenomenon which attracts students. However, to see the phenomenon is not easy since it needs a spectrometer, which is commonly expensive. Therefore, the present study aims to describe a low-cost spectrometer for investigating lighting spectrum…
Descriptors: Light, Lighting, Computer Software, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Listiaji, Prasetyo – Physics Education, 2022
The current pandemic era demands distance learning, including physics experiments on the topic of optics. One of the optical phenomena that needs to be explained in optic courses is fluorescence. This study offers a simple home experiment regarding the application of fluorescence, namely to identify the purity of olive oil using simple…
Descriptors: Science Instruction, Science Experiments, Physics, Optics
Peer reviewed Peer reviewed
Direct linkDirect link
Lujan, Heidi L.; DiCarlo, Stephen E. – Advances in Physiology Education, 2022
Pulse oximetry has become the standard of care in operating rooms, intensive care units, and hospitals worldwide. A pulse oximeter continuously and noninvasively monitors the functional oxygen saturation of hemoglobin in arterial blood (Sa[subscript O2]). Sa[subscript O2] is so important in medical care that it is often regarded as a fifth vital…
Descriptors: Physiology, Teaching Methods, Science Instruction, Medical Services
Peer reviewed Peer reviewed
Direct linkDirect link
Silveira, M. V.; Barthem, R. B.; Santos, A. C. F. – Physics Education, 2020
This work presents an experiment that seeks to simulate human color vision through electronic components in an attempt to build, together with the students, a cybernetic 'eye'. The limitation of the cybernetic eye developed here in relation to the standard human chromatic vision, which makes it a 'colorblind eye', is an argument to be explored by…
Descriptors: Science Experiments, Color, Vision, Genetic Disorders
Peer reviewed Peer reviewed
Direct linkDirect link
Yurumezoglu, Kemal – Physics Education, 2020
In this article, a consecutive series of four hands-on experiments are recommended to teach the colors of paint/pigment and their mixtures. These activities, which are effective in learning about how to make a simple observation and help to build argument-based knowledge about colors, offer an integrated and innovative way of teaching colors of…
Descriptors: Physics, Hands on Science, Educational Innovation, Light
Peer reviewed Peer reviewed
Direct linkDirect link
Vollmer, Michael; Mustard, Alexander – Physics Education, 2019
Water can exhibit many different colors due to a variety of physical properties. Here, we focus on some observable colors within very pure freshwater. We only treat the absorption of light due to electronic and ro-vibrational excitations and scattering due to refractive index fluctuations of the water and the respective consequences for the…
Descriptors: Science Instruction, Color, Light, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Schulze, Tina; Quast, Günter; Bergmann, Antje; Dengler, Roman – Physics Teacher, 2020
Although nearly everyone is familiar with colors from an early age and the fundamentals of color mixing are taught at various abstraction levels throughout kindergarten to high school, we repeatedly observe that our student teachers in physics have problems in explaining the subject. Therefore, we propose an experimental setup that focuses on the…
Descriptors: Physics, Science Instruction, Teaching Methods, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Theilmann, Florian – Physics Education, 2022
Ever since Newton's groundbreaking work on the composed nature of light, additive colour mixing (and its laws) are subject to the interest of physicists as well as other sciences. In this paper, we present a setup for simple lab or home experiments on additive colour mixing and the laws of colour mixing. Students use the screen of a laptop or…
Descriptors: Science Instruction, Science Experiments, Hands on Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago – Physics Teacher, 2018
We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.
Descriptors: Light, Lighting, Color, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Puttharugsa, Chokchai; Srikhirin, Toemsak; Pipatpanukul, Chinnawut; Houngkamhang, Nongluck – Physics Education, 2021
This paper demonstrates the use of a smartphone as a low-cost multi-channel optical fibre spectrophotometer suitable for physics laboratory classes. A custom-designed cradle and structure support were fabricated using 3D printing. The plastic optical fibres were arranged and inserted into the hole of the cradle to guide the light to the rear…
Descriptors: Telecommunications, Handheld Devices, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Zhdanov, Arsenii; Pyay, Anna – Physics Teacher, 2022
Mobile phones are a widely used platform for educational apps, mobile health, and a variety of chemical tests. Here, we are working on a mobile phone-based physics lab (mPhysics) that uses a mobile phone's capabilities to run simple physics experiments and demonstrations. While a mobile phone can be used to analyze magnetic and optical properties…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4