NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Katharine Hubbard; Dominic Henri; Graham Scott; Howard Snelling; Elke Roediger – International Journal of Science Education, 2025
The COVID-19 pandemic posed significant challenges for practical teaching within the sciences. While many instructors adopted innovative alternatives to conventional practicals, many relied on digital approaches that did not give students hands-on experience. In this study we evaluate the use of 'at home' practical kits used in first year physics…
Descriptors: Foreign Countries, Undergraduate Students, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Narayanan, Soumya; Sarin, Pradeep; Pawar, Nitin; Murthy, Sahana – Physical Review Physics Education Research, 2023
[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] We present the pedagogical design and implementation of "ESSENCe": Experimental problem solving using Staging, Scaffolding, Embedded information sources, iNstruments, and Collaboration. Research in experimental physics requires…
Descriptors: Research Skills, Skill Development, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Shannon L. W. Accettone; Cassandra DeFrancesco; Lori Van Belle; Joel Smith; Erin Giroux – Journal of Chemical Education, 2022
The ability of students to perform quantitative analysis is a fundamental aspect of analytical chemistry courses and laboratories. In this laboratory experiment, students quantitatively analyze both liquid and solid samples through the use of internal standard calibration and ATR-FTIR spectroscopy. Using a problem-based approach to selecting their…
Descriptors: Chemistry, Spectroscopy, Science Education, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Mistry, Nimesh; Shahid, Namrah – Journal of Chemical Education, 2021
Guided-inquiry experiments are an important tool for helping students develop scientific practices such as hypothesizing and problem solving. In organic chemistry, these types of experiments can help students learn how to connect the theory of the reaction to the observation and data to decide how the reaction is proceeding or if it needs…
Descriptors: Organic Chemistry, Science Instruction, Computer Simulation, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Perera, Viveka; Acharya, Baku; Patrick, Amanda L.; Mlsna, Deb – Journal of Chemical Education, 2020
Mass spectrometers are ever-increasingly powerful, user-friendly, and affordable. Thus, the addition of mass spectrometry experiments into the undergraduate laboratory curriculum is now both feasible and an effective tool to introduce students to relevant instrumentation. Here an experiment demonstrating the use of a high-resolution electrospray…
Descriptors: Undergraduate Students, Biochemistry, Majors (Students), Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Thornburgh, William; McFadden, Justin; Robinson, Brian – Science and Children, 2020
The "Next Generation Science Standards" ("NGSS") have placed an emphasis on the incorporation of engineering practices into K-12 science instruction. This article details a sequence of physical science lessons that would be part of teaching matter in the second-grade classroom. The goals of these lessons are: (1) to be hands-on…
Descriptors: Standards, Science Education, Engineering Education, Grade 2
Peer reviewed Peer reviewed
Direct linkDirect link
Alpaslan, Muhammet Mustafa – Science Activities: Classroom Projects and Curriculum Ideas, 2017
In recent years, the integration of science and mathematics has become popular among educators because of its potential benefits for student learning. The purpose of this study is to introduce a two-day interdisciplinary lesson that brings science and mathematics concepts together, actively engaging students in working with percentages of the…
Descriptors: Integrated Activities, Learning Activities, Science Activities, Mathematics Activities
Peer reviewed Peer reviewed
Direct linkDirect link
van der Graaf, Joep; Segers, Eliane; Verhoeven, Ludo – Instructional Science: An International Journal of the Learning Sciences, 2015
A dynamic assessment tool was developed and validated using Mokken scale analysis to assess the extent to which kindergartners are able to construct unconfounded experiments, an essential part of scientific reasoning. Scientific reasoning is one of the learning processes happening within science education. A commonly used, hands-on,…
Descriptors: Kindergarten, Science Process Skills, Abstract Reasoning, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
de Lima, Kassio M. G.; da Silva, Amison R. L.; de Souza, Joao P. F.; das Neves, Luiz S.; Gasparotto, Luiz H. S. – Journal of Chemical Education, 2014
Stoichiometry has always been a puzzling subject. This may be partially due to the way it is introduced to students, with stoichiometric coefficients usually provided in the reaction. If the stoichiometric coefficients are not given, students find it very difficult to solve problems. This article describes a simple 4-h laboratory experiment for…
Descriptors: Science Instruction, Chemistry, Stoichiometry, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Dean, J.; Allwood, D. A. – Physics Education, 2014
We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small…
Descriptors: Magnets, Integrated Activities, Science Activities, Investigations
Peer reviewed Peer reviewed
Direct linkDirect link
Keeley, Page – Science and Children, 2015
After completing a science unit on transfer of energy, including how chemical energy from a battery is converted to electrical energy; electrical circuits; and transformation of energy into sound, light, or heat; the students in Mrs. Finlay's fourth-grade science class were challenged to use what they learned to solve a problem. The students…
Descriptors: Scientific Concepts, Engineering Education, Formative Evaluation, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier – Journal of Chemical Education, 2014
A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…
Descriptors: Active Learning, Student Projects, Laboratory Experiments, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M. – Chemistry Education Research and Practice, 2011
We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…
Descriptors: Organic Chemistry, Hands on Science, Science Laboratories, Science Instruction
Morales, Hector – Techniques: Connecting Education and Careers (J1), 2010
Incorporating business skills such as problem-solving, public presentations, collaboration, and self-direction into STEM (science, technology, engineering and mathematics) subjects is an excellent way to build students' enthusiasm for these disciplines. When educators add workplace internships to the learning experience, they are well on their way…
Descriptors: Careers, Experiential Learning, Engineering, High School Seniors
Peer reviewed Peer reviewed
Direct linkDirect link
Hohn, Keith L. – Chemical Engineering Education, 2007
A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…
Descriptors: Student Surveys, Chemical Engineering, Science Experiments, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2