Publication Date
| In 2026 | 0 |
| Since 2025 | 64 |
| Since 2022 (last 5 years) | 714 |
| Since 2017 (last 10 years) | 2219 |
| Since 2007 (last 20 years) | 4968 |
Descriptor
| Science Experiments | 9667 |
| Science Instruction | 5311 |
| College Science | 3918 |
| Science Education | 3480 |
| Chemistry | 3144 |
| Physics | 2648 |
| Scientific Concepts | 2252 |
| Science Activities | 2215 |
| Higher Education | 2171 |
| Laboratory Experiments | 2125 |
| Secondary School Science | 2038 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Practitioners | 1891 |
| Teachers | 1739 |
| Students | 185 |
| Researchers | 72 |
| Administrators | 31 |
| Parents | 20 |
| Policymakers | 6 |
| Community | 3 |
| Media Staff | 1 |
| Support Staff | 1 |
Location
| United Kingdom | 106 |
| United Kingdom (Great Britain) | 93 |
| Turkey | 77 |
| Australia | 67 |
| Germany | 62 |
| Canada | 36 |
| California | 34 |
| China | 34 |
| Italy | 32 |
| United Kingdom (England) | 32 |
| Brazil | 31 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 3 |
| Americans with Disabilities… | 1 |
| Education for All Handicapped… | 1 |
| Elementary and Secondary… | 1 |
| Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 1 |
| Does not meet standards | 1 |
Gabel, Connie – 2003
The quest for the inclusion of science inquiry in the curriculum now spans three centuries. In the late 1800s and early 1900s, Armstrong, Dewey, and others espoused the teaching of science inquiry. The launch of Sputnik in 1957 began the strong emphasis on inquiry. Renewed interest in inquiry occurred in the late 1980s and 1990s with science…
Descriptors: Communication Skills, Curriculum Development, Educational Change, Inquiry
Jervis, Charles K. – 2000
This paper argues for extending the definition of "technology" in education to include much more than just computers, and for recognizing the dangers of using technology for its entertainment purposes. Two conceptions of the proper use of technology in science classrooms are offered: (1) technology as tool; and (2) technology as topic. Specific…
Descriptors: Biology, Chemistry, Educational Philosophy, High Schools
Peer reviewedAlusik, John – Science Activities, 1973
Descriptors: Air Pollution, Environmental Education, Pollution, Resource Materials
Peer reviewedManos, Harry – Physics Teacher, 1974
A physics program within which students design their own experiments and construct the needed equipment is described. Different projects and equipment designed and built by the students are detailed as examples of the success of this program. (JP)
Descriptors: Course Descriptions, Instruction, Laboratories, Laboratory Equipment
Peer reviewedBrown, Walter R. – Science and Children, 1974
Describes precautions that should be taken and procedures that should be followed to minimize the risk of accidents in the school science laboratory. (JR)
Descriptors: Accident Prevention, Elementary School Science, Laboratory Procedures, Laboratory Safety
Lansdown, Brenda – Urban Rev, 1969
Descriptors: Attitude Change, Disadvantaged Youth, Elementary Education, Elementary School Science
Peer reviewedMoore, J. L.; Thomas, F. H. – School Science Review, 1983
Discusses the value of laboratory work, suggesting that it is not superior to other aids such as computer simulated experiments (CSE). Advantages of and problems related to use of CSE in the classroom, responses to criticisms of simulated laboratory work, and evaluation of CSE as a teaching aid are considered. (JN)
Descriptors: Computer Oriented Programs, Evaluation, Foreign Countries, Microcomputers
Peer reviewedBowlt, C. – Physics Education, 1983
Outlines procedures demonstrating that the aperture of a microscope objective limits resolving power and then, by using ancillary measurements made with a calibrated graticule in the microscope eyepiece, that the experimentally determined value for the maximum resolving power of a given objective is close to the value predicted by theory. (JN)
Descriptors: Biology, College Science, High Schools, Higher Education
Peer reviewedWulfsberg, Gary – Journal of Chemical Education, 1983
Describes a series of laboratory experiments designed to provide concrete experiences with advanced inorganic chemistry lecture topics. Stresses student invention of chemical relationships and periodicity according to physical properties and reaction type. Includes comments on student performance and attitudes toward the experiments. (JM)
Descriptors: Chemical Reactions, Chemistry, Cognitive Development, College Science
Peer reviewedBates, P. A. – Physics Education, 1983
Describes apparatus, computer program (for Apple II), and procedures used in an experiment to determine the velocity of sound in air. In addition, the experiment focuses on the attention required in calibrating equipment and the measuring of both long distances and very short time intervals. (JN)
Descriptors: Acoustics, College Science, Computer Oriented Programs, Computer Programs
Peer reviewedWhisnant, David M. – Journal of College Science Teaching, 1983
Three-phased learning cycles (exploration, invention, application) were introduced into general chemistry laboratories at Northland College (Wisconsin). Discusses each phase and its use in a learning cycle on the functional groups of organic compounds. (JN)
Descriptors: Chemistry, College Science, Higher Education, Learning Processes
Peer reviewedTaylor, Kenneth Neal – Physics Teacher, 1983
Describes use of Tinker Toys in several moment of inertia laboratory experiments at the advanced high school or introductory college levels. Includes procedures to be followed, arrangements of the Tinker Toy parts during experiments, and typical student data obtained. (JM)
Descriptors: College Science, High Schools, Higher Education, Laboratory Procedures
Peer reviewedHinchliffe, Louis V.; Skawinski, William J. – Science Teacher, 1983
Macrolab (located at New Jersey Institute of Technology) develops devices, training models, and experiments for the scientific education of handicapped students. The construction and operation of a spectrophotometer for blind and visually impaired students are discussed. Construction details are available from authors. (JN)
Descriptors: Blindness, College Science, Higher Education, Measurement Equipment
Peer reviewedLetcher, Roy M. – Journal of Chemical Education, 1983
Describes an experiment simulating a real-life structure elucidation problem through isolation, characterization, and chemical transformation of an "unknown," naturally occurring monoterpene, with extensive use being made of spectroscopy and aided by biogenetic considerations. Information given to students, procedures, results, and discussion of…
Descriptors: Chemical Analysis, Chemical Reactions, Chemistry, Chromatography
Rosenthal, Donald – Computers in Chemical Education Newsletter, 1983
Uses of Zenith Z-100 microcomputers by chemistry students at Clarkson College are discussed. These include: (1) programing; (2) word processing; (3) numerical methods, statistical/plotting programs; (4) laboratory data acquisition and manipulation; (5) simulations; (6) computer assisted instruction; and (7) computer managed instruction. (JN)
Descriptors: Chemistry, College Science, Computer Assisted Instruction, Computer Managed Instruction


