NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive29
Journal Articles28
Guides - Classroom - Teacher2
Audience
Teachers7
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jordan P. Beck; Diane M. Miller – Journal of Chemical Education, 2022
A version of the classic rotationally resolved infrared (IR) spectrum of a diatomic molecule experiment has been developed using the POGIL framework to more fully engage students in the collection, modeling, analysis, and interpretation of the data. An analysis of the experimental protocol reveals that the POGIL approach actively engages students…
Descriptors: Learner Engagement, Chemistry, Science Instruction, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Jessie King; Barnaby Kelly; Nayla Rhein; Rhonda Rosengren – Biochemistry and Molecular Biology Education, 2024
To best prepare students for the real-world research environment, key skills, including experimental design, data analysis, communication of results, and critical thinking, should be key components of undergraduate science courses. Furthermore, the impact of the COVID-19 pandemic on in-person teaching has resulted in a need to develop courses that…
Descriptors: Undergraduate Students, Laboratory Experiments, Research Design, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Preeti S. Kulkarni; Varuna S. Watwe; Sakshi S. Khatavkar; Akshay A. Khandagale; Sunil D. Kulkarni – Journal of Chemical Education, 2023
Flame Emission Spectroscopy (FES) is a powerful analytical technique widely used for identifying and quantifying elements in various samples. In this laboratory experiment, undergraduate students were introduced to FES and its significance in analytical chemistry. The experiment aimed to provide students with hands-on experience in constructing…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Kater?ina Trc?kova´; Hana Tkac?i´kova´; Roman Mars?a´lek – Journal of Chemical Education, 2023
The purpose of this article is to describe the possibilities of using worksheets in the teaching of lipids and proteins. The worksheet includes a concept map, suggestions for three safe experiments that can be performed with available household chemicals, and observation results. The worksheets were implemented into action research in two classes…
Descriptors: Laboratory Experiments, Laboratory Safety, Worksheets, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Danielle N. Maxwell; Jeffrey L. Spencer; Ethan A. Teich; Madeline Cooke; Braeden Fromwiller; Nathan Peterson; Linda Nicholas-Figueroa; Ginger V. Shultz; Kerri A. Pratt – Journal of Chemical Education, 2023
Reading and understanding scientific literature is an essential skill for any scientist to learn. While students' scientific literacy can be improved by reading research articles, an article's technical language and structure can hinder students' understanding of the scientific material. Furthermore, many students struggle with interpreting graphs…
Descriptors: Teaching Methods, Scientific Literacy, Science Instruction, Reading Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Bowen, G. Michael; Bartley, Anthony – Science Activities: Projects and Curriculum Ideas in STEM Classrooms, 2020
School science is often very different from "real world" science. One important difference, and possibly the main one, is that in school science the relationships between variables have often been sanitized -- essentially "cleaned up" -- so that there is very little (and often no) variation in the data from the relationship…
Descriptors: Science Instruction, Data, Science Activities, Authentic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Balaton, M. C.; Da Silva, L. F.; Carvalho, P. S. – Physics Education, 2020
In this paper, we aim to show strategies for improving graph interpretation skills at middle and high school students using OZOBOT® BIT, a small and relatively low-cost programmable robot which had been used to teach programming to young children. OZOBOT's speed can be controlled by drawing lines with colour codes, as well as through a visual…
Descriptors: Middle School Students, High School Students, Skill Development, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Sattar, Simeen – Journal of Chemical Education, 2019
Pigments, dyes, and transition-metal compounds are made in courses across the undergraduate chemistry curriculum, but student characterization of these compounds' most striking features, their colors, seldom goes beyond verbal descriptions. Affordable, hand-held, fiber-optic reflectance spectrophotometers make it possible to advance students'…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Color
Peer reviewed Peer reviewed
Direct linkDirect link
Schultheis, Elizabeth H.; Kjelvik, Melissa K. – American Biology Teacher, 2020
Authentic, "messy data" contain variability that comes from many sources, such as natural variation in nature, chance occurrences during research, and human error. It is this messiness that both deters potential users of authentic data and gives data the power to create unique learning opportunities that reveal the nature of science…
Descriptors: Data Analysis, Scientific Research, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Dobson, Amy; Feldman, Allan; Nation, Molly; Laux, Katie – Science Teacher, 2019
In 2018 the Gulf coast of Florida suffered extensive damage from harmful algal blooms (HABs), from as far north as Clearwater Beach south to Naples. The bloom lasted nearly a year, picking up in intensity during the late summer months. HABs occur when conditions such as reduced salinity, higher water temperatures, light saturation, and currents…
Descriptors: Climate, Oceanography, Inquiry, Water
Peer reviewed Peer reviewed
Direct linkDirect link
Forster, Michelle; Bestelmeyer, Stephanie; Baez-Rodriguez, Noelia; Berkowitz, Alan; Caplan, Bess; Esposito, Rhea; Grace, Elizabeth; McGee, Steven – Science Teacher, 2018
Thousands of students around the country have participated in activities using the Data Jam model, creating poetry, songs, videos, or sculpture to improve their data literacy, gain knowledge of local science research, and creatively express their findings. This article introduces the Data Jam model and describes how teachers can use it in…
Descriptors: Information Literacy, Scientific Literacy, Science Activities, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Slade, David J. – Journal of Chemical Education, 2017
The first-semester introductory organic chemistry laboratory has been adapted to include mini postlab assignments that students must complete correctly, through as many attempts as prove to be necessary. The use of multiple drafts of writing assignments is a standard approach to improving writing, so the system was designed to require drafts for…
Descriptors: Organic Chemistry, Introductory Courses, Science Laboratories, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Fitzallen, Noleine; Watson, Jane; Wright, Suzie – Australian Primary Mathematics Classroom, 2017
When working within a meaningful context quite young students are capable of working with sophisticated data. Year 3 students investigate thermal insulation and the transfer of heat in a STEM inquiry, developing skills in measuring temperature by conducting a statistical investigation, and using a stylised graph to interpret their data.
Descriptors: Grade 2, Elementary School Students, Graphs, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Swanson, Lauren; Vernon, Heather; Bauer, Christina – Science Teacher, 2018
Understanding how scientific conclusions are drawn from data is central to learning about the nature of science. Many students struggle with aspects of reasoning from data, including identifying relationships among variables, interpreting graphs, coordinating theory and evidence, and not allowing personal beliefs to outweigh the data when forming…
Descriptors: Data Interpretation, Scientific Principles, Science Instruction, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Kastens, Kim; Krumhansl, Ruth; Baker, Irene – Science Teacher, 2015
This article is aimed at teachers already experienced with activities involving small, student-collected data sets and who are now ready to begin working with large, online data sets collected by scientists and engineers. The authors discuss challenges, instructional strategies, and sources of appropriate lesson plans. With guidance, plus online…
Descriptors: Science Instruction, Data Collection, Data Analysis, Data Interpretation
Previous Page | Next Page »
Pages: 1  |  2