Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 8 |
Descriptor
Source
Chemical Engineering Education | 9 |
Author
Falconer, John L. | 2 |
Ali, Emad | 1 |
Bungay, H. R. | 1 |
Chirdon, William M. | 1 |
Clarke, Matthew A. | 1 |
Cramer, Steven M. | 1 |
Evans, Steven T. | 1 |
Funkenbusch, LiLu Tian | 1 |
Giraldo, Carlos | 1 |
Hendren, Neil | 1 |
Huang, Xinqun | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Descriptive | 5 |
Reports - Research | 3 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Audience
Teachers | 2 |
Practitioners | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Keisha C. A. Antoine; Lealon L. Martin; Jorge F. Gabitto – Chemical Engineering Education, 2024
In this paper we demonstrate that using mixed reality (MR) technology can innovate our chemical engineering laboratory curriculum at Prairie View A&M University, a Historically Black College/University (HBCU). Particularly, we describe the development of a MR proof of concept to carry out a traditional fluid mechanics lab -- pressure drop as a…
Descriptors: Science Instruction, Black Colleges, Chemical Engineering, Science Laboratories
Funkenbusch, LiLu Tian; Rivera-Jiménez, Sindia – Chemical Engineering Education, 2023
The continuous distillation experiment in the Unit Operations Lab was moved to a virtual platform. Students used old data and equipment specifications to simulate the column in Aspen HYSYS. Students experimented without the limitations of existing equipment. For example, they studied the number of trays in the virtual column, something that is…
Descriptors: Chemistry, Science Instruction, Feedback (Response), Student Attitudes
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Falconer, John L.; Nicodemus, Garret D. – Chemical Engineering Education, 2014
Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…
Descriptors: Computer Simulation, Mathematics, Engineering Education, Chemical Engineering
Chirdon, William M. – Chemical Engineering Education, 2010
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Descriptors: Plastics, Computer Simulation, Internet, Educational Technology
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M. – Chemical Engineering Education, 2010
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Descriptors: Computer Simulation, Biotechnology, Problem Based Learning, Courses
Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries

Bungay, H. R. – Chemical Engineering Education, 1986
Describes a course in biochemical engineering fundamentals which relies heavily on the use of personal computers. The computers are used with interactive tutorials, problems that require computer simulations of differential equations, and homework assignments. A list of computer assignments and student term projects is included. (TW)
Descriptors: Biochemistry, College Science, Computer Assisted Instruction, Computer Simulation