NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 28 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Alanah Grant St. James; Luke Hand; Thomas Mills; Liwen Song; Annabel S. J. Brunt; Patrick E. Bergstrom Mann; Andrew F. Worrall; Malcolm I. Stewart; Claire Vallance – Journal of Chemical Education, 2023
Applications of machine learning in chemistry are many and varied, from prediction of structure-property relationships, to modeling of potential energy surfaces for large scale atomistic simulations. We describe a generalized approach for the application of machine learning to the classification of spectra which can be used as the basis for a wide…
Descriptors: Artificial Intelligence, Chemistry, Science Instruction, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Qiang Fu; Li Liu; Guofu Wang; Jing Yu; Shiyuan Fu – Journal of Chemical Education, 2023
Commonly used methods to simulate the oxidation-reduction (redox) titration curves include the three-step method and the rigorous method. The simple three-step method simulates the redox titration curve with the assumption that the reaction is complete, which is widely used in undergraduate quantitative analysis courses. For the rigorous…
Descriptors: Chemistry, Simulation, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas Kraska – Journal of Chemical Education, 2022
An educational lattice model is proposed for the investigation of the influence of the density and indirectly of the pressure on the chemical equilibrium of the ideal gas phase reaction A [equilibrium] 2B. The model can be introduced by a board game simulating a stochastic process. This game can also be used to set up a corresponding computer…
Descriptors: Secondary School Students, Secondary School Science, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Kimberly Vo; Mahbub Sarkar; Paul J. White; Elizabeth Yuriev – Chemistry Education Research and Practice, 2024
Despite problem solving being a core skill in chemistry, students often struggle to solve chemistry problems. This difficulty may arise from students trying to solve problems through memorising algorithms. Goldilocks Help serves as a problem-solving scaffold that supports students through structured problem solving and its elements, such as…
Descriptors: Metacognition, Scaffolding (Teaching Technique), Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Stott, Angela Elisabeth – Chemistry Education Research and Practice, 2023
The unit factor method, a generic strategy for solving any proportion-related problem, is known to be effective at reducing cognitive load through unit-cancellation providing step-by-step guidance. However, concerns have been raised that it can be applied mindlessly. This primarily quantitative prepost study investigates the efficacy of…
Descriptors: Chemistry, Science Instruction, Instructional Effectiveness, Teaching Methods
Niaz, Mansoor; Robinson, William R. – 1991
It has been shown previously that many students solve chemistry problems using only algorithmic strategies and do not understand the chemical concepts on which the problems are based. It is plausible to suggest that if the information is presented in differing formats the cognitive demand of a problem changes. The main objective of this study…
Descriptors: Algorithms, Chemistry, Cognitive Development, Cognitive Style
Peer reviewed Peer reviewed
Phelps, Amy J. – Journal of Chemical Education, 1996
Evaluates an instructional method in general chemistry that attempts to bridge the gap between algorithmic problem-solving abilities and conceptual understanding of chemistry students and emphasizes conceptual problem solving in the initial phase of a concept. Concludes that using a conceptual focus for the chemistry courses had many positive…
Descriptors: Algorithms, Chemistry, Educational Strategies, Higher Education
Peer reviewed Peer reviewed
Roy, S. C. Dutta – Journal of Chemical Education, 1997
States a convenient algorithm for temperature scale conversions and shows how performing the successive steps improves the accuracy of the results. (DDR)
Descriptors: Algorithms, Chemistry, Educational Strategies, Higher Education
Peer reviewed Peer reviewed
Krieger, Carla R. – Journal of Chemical Education, 1997
Describes the use of Moe's Mall, a locational device designed to be used by learners, as a simple algorithm for solving mole-based exercises efficiently and accurately using dimensional analysis. (DDR)
Descriptors: Algorithms, Chemistry, Cognitive Structures, Educational Practices
Niaz, Mansoor – 1994
The main objective of this study is to construct models based on strategies students use to solve chemistry problems and to show that these models form sequences of progressive transitions similar to what Lakatos (1970) in the history of science refers to as progressive 'problemshifts' that increase the explanatory' heuristic power of the models.…
Descriptors: Algorithms, Chemistry, Classroom Research, Concept Formation
Peer reviewed Peer reviewed
Coulter, David – School Science and Mathematics, 1981
A study to investigate one of the mechanisms teachers may use to convince themselves incorrectly that students have learned science concepts requiring formal operational ability is presented. The investigation indicates instructors may actually teach and test for memorization of algorithms rather than understanding. (MP)
Descriptors: Algorithms, Chemistry, Educational Research, Learning Theories
Coscarelli, William C.; Schwen, Thomas M. – Educational Communication and Technology: A Journal of Theory, Research, and Development, 1979
Presented three algorithms to university students in an introductory laboratory chemistry course and found that differences in the effects of representation modes--flow charts, lists, and standard prose--were complex and changed over 10 lab sessions. There was no evidence that representation mode affected critical thinking ability or final grade.…
Descriptors: Algorithms, Chemistry, Comparative Analysis, Critical Thinking
Mason, Diana; Crawley, Frank E. – 1994
The purpose of this investigation was to identify and describe the differences in the methods used by experts (university chemistry professors) and nonscience major introductory chemistry students, enrolled in a course at the university level, to solve paired algorithmic and conceptual problems. Of the 180 students involved, the problem-solving…
Descriptors: Algorithms, Chemistry, Concept Formation, Educational Research
Coscarelli, William C. – 1977
This study, part of an instructional development project, explores the effects of three different representations of functional algorithms in an introductory chemistry laboratory. Intact classes were randomly assigned to a flowchart, list, or standard prose representation of the procedures (algorithms). At the completion of 11 laboratory sessions,…
Descriptors: Algorithms, Chemistry, Critical Thinking, Educational Research
SHAPOVALENKO, S.G. – 1964
DEVELOPMENT OF NON-MACHINE PROGRAMED INSTRUCTION ACCORDING TO STATE-SPECIFIED EDUCATIONAL GOALS AND TRADITIONAL PSYCHOLOGICAL PRINCIPLES WILL ALLOW EFFICIENT, INDEPENDENT, CONTROLLED LEARNING, BUT MUST BE USED IN COMBINATION WITH CONVENTIONAL INSTRUCTION TO FORTIFY IN PUPILS THE FEELING OF COLLECTIVISM. EXPERIMENTAL WORK WITH SEVENTH GRADE SHOWS…
Descriptors: Academic Achievement, Algorithms, Chemistry, Conventional Instruction
Previous Page | Next Page ยป
Pages: 1  |  2