NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chapman, Kayla E.; Davidson, Megan E.; Liberatore, Matthew W. – Chemical Engineering Education, 2021
Student success and attempts on hundreds of online homework problems housed in a fully interactive online textbook, Material and Energy Balances zyBook, were studied over three cohorts of students (n=284). Auto-graded homework questions with randomized numbers and content can explore proficiency in the course material. Students are allowed to…
Descriptors: Energy, Homework, Science Instruction, Textbooks
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L. – Chemical Engineering Education, 2016
More than 40 interactive "Mathematica" simulations were prepared for chemical engineering thermodynamics, screencasts were prepared that explain how to use each simulation, and more than 100 ConcepTests were prepared that utilize the simulations. They are located on www.LearnChemE.com. The purposes of these simulations are to clarify…
Descriptors: Thermodynamics, Simulation, Chemical Engineering, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Zualkernan, Imran A.; Husseini, Ghaleb A.; Loughlin, Kevin F.; Mohebzada, Jamshaid G.; El Gaml, Moataz – Chemical Engineering Education, 2013
Social networking platforms and computer games represent a natural informal learning environment for the current generation of learners in higher education. This paper explores the use of game-based learning in the context of an undergraduate chemical engineering remote laboratory. Specifically, students are allowed to manipulate chemical…
Descriptors: Social Networks, Chemical Engineering, Computer Games, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tudela, Ignacio; Bonete, Pedro; Fullana, Andres; Conesa, Juan Antonio – Journal of Chemical Education, 2011
The unreacted-core shrinking (UCS) model is employed to characterize fluid-particle reactions that are important in industry and research. An approach to understand the UCS model by numerical methods is presented, which helps the visualization of the influence of the variables that control the overall heterogeneous process. Use of this approach in…
Descriptors: Chemistry, Computer Assisted Instruction, Science Instruction, Chemical Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Ali, Emad; Idriss, Arimiyawo – Chemical Engineering Education, 2009
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Descriptors: Engineering Education, Chemical Engineering, Computer Simulation, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine – Chemical Engineering Education, 2010
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
Descriptors: Distance Education, Synchronous Communication, Course Descriptions, Lecture Method
Peer reviewed Peer reviewed
Direct linkDirect link
Savage, Phillip E. – Chemical Engineering Education, 2008
Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…
Descriptors: Equations (Mathematics), Algebra, Teaching Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rossiter, Diane; Petrulis, Robert; Biggs, Catherine A. – Chemical Engineering Education, 2010
This paper describes the development of a first-year chemical engineering course over 5 years through action research based on evidence from student feedback. As a result of this research, the course has evolved into a blended approach which incorporates problem based learning (PBL) and online learning tools. Through the use of PBL, the students…
Descriptors: Electronic Learning, Feedback (Response), Action Research, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
Peer reviewed Peer reviewed
Roat, S. D.; Melsheimer, S. S. – Chemical Engineering Education, 1987
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Uses in Education
Peer reviewed Peer reviewed
Krieger, James – Chemical and Engineering News, 1983
Evaluates influence of computer assisted instruction on engineering education, considering use of computers to remove burden of doing calculations and to provide interactive self-study programs of a tutorial/remedial nature. Cites universities requiring personal computer purchase, pointing out possibility for individualized design assignments.…
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Oriented Programs
Peer reviewed Peer reviewed
Dixon, Anthony G. – Chemical Engineering Education, 1987
Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Graphics
Peer reviewed Peer reviewed
Pritchard, Colin – Chemical Engineering Education, 1986
Discusses the need to design distillation columns that are more energy efficient. Describes a "design and build" project completed by two college students aimed at demonstrating the principles of vapour compression distillation in a more energy efficient way. General design specifications are given, along with suggestions for teaching…
Descriptors: Chemical Engineering, Chemistry, College Science, Computer Assisted Instruction
Peer reviewed Peer reviewed
Skattes, J. M. – Chemical Engineering Education, 1986
Describes the use of a microcomputer program which was written to analyze batch reactor data by the integral method. Discusses how the program is structured and used by students in engineering kinetics. An example problem is included along with the computer's solution. (TW)
Descriptors: Chemical Engineering, Chemistry, College Science, Computer Assisted Instruction