NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Agcali, Rahime Yagmur; Atik, Bahar; Bilgen, Ecenaz; Karli, Berfu; Danisman, Mehmet Fatih – Journal of Chemical Education, 2019
Understanding the concepts of quantum mechanics has always been a challenge for undergraduate students. This is especially so because many of the introductory (analytically solvable) systems and problems discussed in textbooks are seemingly abstract. Using approximate experimental demonstrations of such systems and problems have been shown to be…
Descriptors: Science Instruction, Undergraduate Students, College Science, Quantum Mechanics
Peer reviewed Peer reviewed
Direct linkDirect link
Camrud, Evan; Turner, Daniel B. – Journal of Chemical Education, 2017
Numerous computational and spectroscopic studies have demonstrated the decisive role played by nonadiabatic coupling in photochemical reactions. Nonadiabatic coupling drives photochemistry when potential energy surfaces are nearly degenerate at avoided crossings or truly degenerate at unavoided crossings. The dynamics induced by nonadiabatic…
Descriptors: Chemistry, Science Instruction, College Science, Graduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Brom, Joseph M. – Journal of Chemical Education, 2017
The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…
Descriptors: Chemistry, Science Instruction, Measurement Techniques, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Carlotto, Silvia; Zerbetto, Mirco – Journal of Chemical Education, 2014
We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…
Descriptors: Science Instruction, Chemistry, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Martini, Sheridan R.; Hartzell, Cynthia J. – Journal of Chemical Education, 2015
Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…
Descriptors: Science Instruction, Chemistry, Quantum Mechanics, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan – Journal of Chemical Education, 2013
A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…
Descriptors: Science Instruction, College Science, Chemistry, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Anderson, Bruce D. – Journal of Chemical Education, 2012
Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…
Descriptors: Chemistry, Science Instruction, Quantum Mechanics, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto – Journal of Chemical Education, 2012
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Descriptors: Science Instruction, College Science, Undergraduate Study, Graduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Gurmukh – Journal of Educational Technology Systems, 2012
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
Descriptors: Undergraduate Students, Quantum Mechanics, Physics, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Kraftmakher, Yaakov – European Journal of Physics, 2008
The "quantum efficiency" (QE) is an important property of a light detector. This quantity can be determined in the undergraduate physics laboratory. The experimentally determined QE of a silicon photodiode appeared to be in reasonable agreement with expected values. The experiment confirms the quantum properties of light and seems to be a useful…
Descriptors: Physics, Light, Quantum Mechanics, Science Instruction
Peer reviewed Peer reviewed
Riggi, F. – American Journal of Physics, 1981
Different programs have been developed for the simulation of physics experiments by using TI-57 programmable calculators. Two of these programs, describing the simulation of a successive radioactive decay and the random motion of a gas molecule, are presented. (Author/SK)
Descriptors: Calculators, College Science, Computer Assisted Instruction, Computer Oriented Programs
Murphy, P. J.; And Others – 1981
This report describes evaluations of two courses which were conducted, primarily through participant observation, in 1981. A general introduction looks at simulation in computer assisted learning (CAL) and at use of simulation CAL in the Open University science faculty. The first study discussed was based largely on a tutor's observations of…
Descriptors: College Students, Computer Assisted Instruction, Computer Simulation, Courseware
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1987
Describes eight applications of the use of computers in teaching chemistry. Includes discussions of audio frequency measurements of heat capacity ratios, quantum mechanics, ab initio calculations, problem solving using spreadsheets, simplex optimization, faradaic impedance diagrams, and the recording and tabulation of student laboratory data. (TW)
Descriptors: Chemistry, College Science, Computer Assisted Instruction, Computer Simulation
Ahtee, Maija, Ed.; And Others – 1991
The main purpose of this symposium was to find new ideas and resources for the evaluation and improvement of physics education on all levels. The papers included in this document are entitled: (1) "Quality of Physics Teaching Through Building Models and Advancing Research Skills"; (2) "Evaluation of Physics Education in Terms of Its…
Descriptors: Cognitive Development, Cognitive Style, Computer Assisted Instruction, Concept Formation