NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Danese, Anthony – Physics Teacher, 2022
In this paper I describe an interactive Gauss's law computer simulation using the GlowScript programming environment. The simulation calculates a point charge's electric field at locations on the surface of a Gaussian cube and displays the electric field in GlowScript's 3D graphics window. The point charge can be moved, and the electric field…
Descriptors: Computer Simulation, Science Instruction, Energy, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Benacka, Jan – Physics Education, 2017
This paper gives an account of an experiment in which thirty-three high school students of ages 17-19 developed spreadsheet numerical models of satellite and space probe motion. The models are free to download. A survey was carried out to find out the students' opinion of the lessons.
Descriptors: Science Instruction, High Schools, Secondary School Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Muelleman, Andrew W.; Glaser, Rainer E. – Journal of Chemical Education, 2018
Literacy requires reading comprehension, and fostering reading skills is an essential prerequisite to and a synergistic enabler of the development of writing skills. Reading comprehension in the chemical sciences not only consists of the understanding of text but also includes the reading and processing of data tables, schemes, and graphs. Thus,…
Descriptors: Chemistry, Science Instruction, Literacy, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Benacka, Jan – Physics Education, 2015
This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…
Descriptors: Motion, Science Instruction, Physics, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Quale, Andreas – Physics Education, 2012
In the teaching of physics at upper secondary school level (K10-K12), the students are generally taught to solve problems analytically, i.e. using the dynamics describing a system (typically in the form of differential equations) to compute its evolution in time, e.g. the motion of a body along a straight line or in a plane. This reduces the scope…
Descriptors: Physics, Spreadsheets, Teaching Methods, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Ray, Darrell L. – American Biology Teacher, 2013
Students often enter biology programs deficient in the math and computational skills that would enhance their attainment of a deeper understanding of the discipline. To address some of these concerns, I developed a series of spreadsheet simulation exercises that focus on some of the mathematical foundations of scientific inquiry and the benefits…
Descriptors: Science Instruction, Mathematics Skills, Educational Technology, Spreadsheets
Peer reviewed Peer reviewed
Direct linkDirect link
Krange, Ingeborg; Arnseth, Hans Christian – Cultural Studies of Science Education, 2012
The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource…
Descriptors: Science Education, Scientific Concepts, Virtual Classrooms, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Gurmukh; Siddiqui, Khalid; Singh, Mankiran; Singh, Satpal – Journal of Educational Technology Systems, 2011
The current research article is based on a simple and practical way of employing the computational power of widely available, versatile software MS Excel 2007 to perform interactive computer simulations for undergraduate/graduate students in biology, biochemistry, biophysics, microbiology, medicine in college and university classroom setting. To…
Descriptors: Heredity, Genetics, Biological Sciences, Medical Education
Peer reviewed Peer reviewed
Direct linkDirect link
Shalliker, R. A.; Kayillo, S.; Dennis, G. R. – Journal of Chemical Education, 2008
Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…
Descriptors: Chemistry, Science Instruction, Laboratory Experiments, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Prayaga, Chandra – Physics Education, 2008
A simple interface between VPython and Microsoft (MS) Office products such as Word and Excel, controlled by Visual Basic for Applications, is described. The interface allows the preparation of content-rich, interactive learning environments by taking advantage of the three-dimensional (3D) visualization capabilities of VPython and the GUI…
Descriptors: Computer Assisted Instruction, Visualization, Scientific Concepts, Computer Software
Peer reviewed Peer reviewed
Forinash, Kyle; Wisman, Raymond – T.H.E. Journal, 2001
Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)
Descriptors: Computer Simulation, Distance Education, Instructional Effectiveness, Laboratory Experiments
Peer reviewed Peer reviewed
Neuwirth, Erich – Education and Computing, 1988
Discussion of the use of computers in education focuses on ways to teach with limited computer resources. Learning processes with computers are described, the teacher-student relationship is examined, and examples of instruction using only one computer are given, including simulation programs in physics and the use of spreadsheets in mathematics.…
Descriptors: Computer Assisted Instruction, Computer Graphics, Computer Simulation, Courseware
Peer reviewed Peer reviewed
Price, Charles L. – Journal of Science Teacher Education, 1989
Ways in which computers can contribute to science instruction are described. Science software is classified according to the primary assistance provided the teacher-instruction, information, or measurement and analysis. Drill and practice, simulations, tutorials, interactive videodisc, word processors, spreadsheets, databases, microcomputer-based…
Descriptors: Computer Simulation, Computer Software, Computer Uses in Education, Databases
Peer reviewed Peer reviewed
Whitmer, John C. – Science Teacher, 1990
Described is the generation of a scale model of the solar system and the milky way galaxy using a computer spreadsheet program. A sample spreadsheet including cell formulas is provided. Suggestions for using this activity as a teaching technique are included. (CW)
Descriptors: Astronomy, Computer Simulation, Computer Uses in Education, Earth Science
Previous Page | Next Page ยป
Pages: 1  |  2