Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 6 |
Descriptor
Chemical Engineering | 22 |
Course Descriptions | 22 |
Science Instruction | 22 |
College Science | 17 |
Engineering Education | 15 |
Science Curriculum | 13 |
Higher Education | 12 |
Science Education | 12 |
Chemistry | 10 |
Course Content | 8 |
Teaching Methods | 5 |
More ▼ |
Source
Chemical Engineering Education | 17 |
Journal of Chemical Education | 2 |
European Journal of… | 1 |
Science, Technology & Society | 1 |
Weaver | 1 |
Author
Aronson, Mark T. | 1 |
Baah, David | 1 |
Boon, Mieke | 1 |
Boukouvala, Fani | 1 |
Bradley, James | 1 |
Brewster, B. S. | 1 |
Burnett, J. N. | 1 |
Burnett, J. Nicholas | 1 |
Cheng, Pengfei | 1 |
Choi, Sihoon | 1 |
Clarke, Matthew A. | 1 |
More ▼ |
Publication Type
Journal Articles | 22 |
Reports - Descriptive | 19 |
Opinion Papers | 2 |
Reports - Research | 2 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 4 |
Audience
Practitioners | 13 |
Researchers | 2 |
Teachers | 2 |
Administrators | 1 |
Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Medford, Andrew J.; Boukouvala, Fani; Grover, Martha A.; Sholl, David; Meredith, Carson; Cheng, Pengfei; Choi, Sihoon; Gusmão, Gabriel S.; Kilwein, Zachary; Ravutla, Suryateja; Wirth, Fatimah; Wooley, Jennifer; Sewer, Zaid – Chemical Engineering Education, 2022
The Graduate Certificate in Data Science for the Chemical Industries was designed to provide skills to working professionals, via a fully online and asynchronous format. The certificate may also be earned by undergraduate and graduate students at Georgia Tech. The certificate consists of four courses. The two core courses are Data Analytics for…
Descriptors: Chemistry, Science Instruction, Statistics Education, Chemical Engineering
Orozco, Mariana; Boon, Mieke; Susarrey Arce, Arturo – European Journal of Engineering Education, 2023
This paper reports on the design of an innovative Electrochemistry course, part of a Chemical Science Engineering programme. Teachers have observed that their students' understanding of electrochemical concepts and phenomena is insufficient to attempt connections to further concepts, and to generate new knowledge in scientific problem-solving. A…
Descriptors: Engineering Education, Chemistry, Science Instruction, Teaching Methods
Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J. – Chemical Engineering Education, 2009
A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…
Descriptors: Feedback (Response), Laboratories, Chemical Engineering, Laboratory Experiments
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine – Chemical Engineering Education, 2010
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
Descriptors: Distance Education, Synchronous Communication, Course Descriptions, Lecture Method
Clarke, Matthew A.; Giraldo, Carlos – Chemical Engineering Education, 2009
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
Descriptors: Computer Simulation, Chemical Engineering, Programming, Foreign Countries
O'Connor, Kim C. – Chemical Engineering Education, 2007
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Descriptors: Introductory Courses, Biotechnology, Chemical Engineering, Science Instruction

Lee, William E., III – Chemical Engineering Education, 1989
Develops a course which would give students a chance to think critically, be exposed to recent developments including applications to other fields, and be exposed to the general field of the philosophy of science. Provides a course outline, required and referenced textbooks, and selected journal articles. (YP)
Descriptors: Chemical Engineering, College Science, Course Descriptions, Course Objectives

Douglas, J. M.; Kirkwood, Robert L. – Chemical Engineering Education, 1989
Describes the spectrum of process design problems. Suggests a methodology for teaching some concepts used in design, including the types of processes considered and their designs, new tools useful in conceptual design, and a strategy for developing conceptual designs. (YP)
Descriptors: Chemical Engineering, College Science, Course Descriptions, Course Organization
Burnett, J. N. – Science, Technology & Society, 1986
Presents a description of the course "From Petroleum to Penicillin" which examines chemical engineering and the chemical industry from a scientific, social and symbolic view. Explains the goals, organization, and requirements of the course. Lists case study and lecture topics. (ML)
Descriptors: Chemical Engineering, Chemical Industry, College Science, Course Descriptions

Skaates, J. Michael – Chemical Engineering Education, 1987
Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content

Takoudis, Christos G. – Chemical Engineering Education, 1987
Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)
Descriptors: Chemical Engineering, College Science, Computer Uses in Education, Course Content

Burnett, J. Nicholas – Weaver, 1986
Describes a chemical engineering course for liberal arts students that is taught from a scientific, social, and symbolic perspective. A summary of the early days of oil refining is included as representative of one of the major content segments of the course. (ML)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Descriptions

Fasching, James L.; Erickson, Bette LaSere – Journal of Chemical Education, 1985
Five years ago, an introductory chemistry course for chemists and chemical engineers was redesigned to stress the scientific method, problem-solving, and reasoning skills. Describes: (1) changes made in the course; (2) impacts on student achievement; and (3) student ratings of the course. (JN)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Descriptions

Ng, Terry K-L.; And Others – Chemical Engineering Education, 1988
Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)
Descriptors: Biochemistry, Chemical Engineering, Chemistry, College Science

McCready, Mark J.; Leighton, David T. – Chemical Engineering Education, 1987
Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Previous Page | Next Page »
Pages: 1 | 2