NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Toral, S. L.; Barrero, F.; Martinez-Torres, M. R.; Gallardo, S.; Duran, M. J. – IEEE Transactions on Education, 2009
The prevailing tendency in modern university reforms is towards "how people learn," following a learner-centered approach in which the learner is the main actor of the teaching-learning process. As a consequence, one of the key indicators of the teaching-learning process is the measurement of learner satisfaction within the classroom.…
Descriptors: Surveys, Course Descriptions, Science Instruction, Structural Equation Models
Peer reviewed Peer reviewed
Liebermann, John, Jr. – Journal of Chemical Education, 1985
Describes an advanced high school chemistry course that exposes students to a wide variety of modern, realistic instrumental techniques. The laboratory syllabus for the course (which uses the textbook "Organic Chemistry" by Morrison and Boyd) is included. (JN)
Descriptors: Advanced Courses, Course Descriptions, High Schools, Instrumentation
Peer reviewed Peer reviewed
Arkun, Yaman; And Others – Chemical Engineering Education, 1988
Describes a graduate engineering course which specializes in model predictive control. Lists course outline and scope. Discusses some specific topics and teaching methods. Suggests final projects for the students. (MVL)
Descriptors: Automation, Chemistry, College Science, Course Content
Peer reviewed Peer reviewed
Deshpande, Pradeep B. – Chemical Engineering Education, 1988
Describes an engineering course for graduate study in process control. Lists four major topics: interaction analysis, multiloop controller design, decoupling, and multivariable control strategies. Suggests a course outline and gives information about each topic. (MVL)
Descriptors: Automation, College Science, Course Content, Course Descriptions
Georgia State Univ., Atlanta. Dept. of Vocational and Career Development. – 1984
This guide offers information and procedures necessary to train electronics engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of electronics engineering technology is described. Next, a curriculum model is set forth that contains information on the standard electronics engineering…
Descriptors: Classroom Techniques, Computer Oriented Programs, Course Content, Course Descriptions