Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 37 |
Descriptor
Graphs | 51 |
Motion | 51 |
Science Instruction | 51 |
Physics | 38 |
Scientific Concepts | 23 |
Teaching Methods | 14 |
Problem Solving | 13 |
Scientific Principles | 10 |
Mechanics (Physics) | 9 |
Science Education | 9 |
Computer Assisted Instruction | 8 |
More ▼ |
Source
Author
Brasell, Heather | 2 |
Dean, Kevin | 2 |
Sokolowski, Andrzej | 2 |
Abella-Palacios, A. J. | 1 |
Ahtee, Maija, Ed. | 1 |
Airey, J. | 1 |
Anastopoulou, Stamatina | 1 |
Baber, Chris | 1 |
Bartlett, Albert A. | 1 |
Belloni, Mario | 1 |
Brasell, Heather M. | 1 |
More ▼ |
Publication Type
Journal Articles | 40 |
Reports - Descriptive | 23 |
Reports - Research | 14 |
Guides - Classroom - Teacher | 10 |
Reports - Evaluative | 5 |
Collected Works - Proceedings | 2 |
Speeches/Meeting Papers | 2 |
Books | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 9 |
Secondary Education | 8 |
Grade 8 | 7 |
Grade 6 | 6 |
High Schools | 6 |
Grade 5 | 5 |
Grade 7 | 5 |
Postsecondary Education | 5 |
Elementary Education | 4 |
Elementary Secondary Education | 4 |
Grade 4 | 4 |
More ▼ |
Audience
Teachers | 10 |
Practitioners | 5 |
Researchers | 4 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 6 |
Assessments and Surveys
What Works Clearinghouse Rating
Tufan Inaltekin; Tolga Saka – Journal of Baltic Science Education, 2025
In science, one of the most crucial representations for constructing meaning about physical events is graphs. The first graph students encounter in science class is the constant velocity motion graph. Therefore, examining students' understanding of structuring and interpreting these graphs for the relationship between distance, time, and velocity…
Descriptors: Science Instruction, Graphs, Motion, Scientific Concepts
Rangkuti, Muhammad Aswin; Karam, Ricardo – Physical Review Physics Education Research, 2022
Student difficulties with making sense of graphs in physics have been thoroughly reported. In the study of one-dimensional waves, the issue is even trickier since the amplitude is a function of two variables (position and time). In this work, we investigate students' reasoning and difficulties with interpreting the graphical representation of the…
Descriptors: Physics, Science Instruction, Scientific Concepts, Graphs
Rinaldi, R. Gustav; Fauzi, Ahmad – Physics Education, 2020
The recent works of oscillators are mainly focused on underdamped oscillation. Therefore, the writer proposes an experimental apparatus to demonstrate all types of damped harmonic oscillation. The apparatus utilizes an Arduino for data acquisition and an Excel spreadsheet for data analysis. By using this apparatus, the type of damped harmonic…
Descriptors: Science Instruction, Science Experiments, Measurement Techniques, Physics
Ramos, L. M.; Reis, C. R. N.; Calheiro, L. B.; Goncalves, A. M. B. – Physics Education, 2021
Using a joystick module, we followed the movement of a chaotic magnetic pendulum. The pendulum bar was attached to a joystick that served as a pivot point and biaxial angular motion sensor. Using an Arduino board, we could follow the position as a function of time along both the "x" and "y"-axis and draw a graph showing the…
Descriptors: Physics, Science Instruction, Computer Software, Motion
de Oliveira, A. L.; de Jesus, V. L. B.; Sasaki, D. G. G. – Physics Education, 2021
The drag effect on a falling ball caused by air is a conventional subject in the most well-known textbooks of classical mechanics and fluid dynamics. Further, there are some papers that employ video analysis to track objects movements in the air making it possible to obtain position data as a function of time and its graphs. However, none of them…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Dean, Kevin – European Journal of Physics Education, 2018
The conical pendulum provides a rich source of theoretical and computational analysis and the present work presents a seamless continuation of the previous publication. The tension force F[subscript T] and centripetal force F[subscript C] are explored further in linearization analyses and the appropriate slopes are explained. A similar analysis is…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Developing Representational Competence: Linking Real-World Motion to Physics Concepts through Graphs
Volkwyn, T. S.; Airey, J.; Gregorcic, B.; Linder, C. – Learning: Research and Practice, 2020
A social semiotic lens is used to characterise aspects of representational competence for a discipline such as physics, to provide science teachers with a practical suggestion about how student learning might be organised to develop representational competence. We suggest that representational competence for some areas of science can be…
Descriptors: Science Instruction, Physics, Science Teachers, Competence
Sengul, Ozden – School Science Review, 2020
This article describes the implementation of an activity with a Predict-Observe-Explain (POE) learning cycle to teach the concepts of velocity and acceleration to physics students aged 17-19. The study indicates how the instructor enacted the activity and provides sample student responses and group discussions. The description includes an example…
Descriptors: Science Instruction, College Science, Undergraduate Students, Physics
Sokolowski, Andrzej – Physics Teacher, 2018
Traditional school laboratory exercises on a system of moving objects connected by strings involve deriving expressions for the system acceleration, a = (?F)/m, and sketching a graph of acceleration vs. force. While being in the form of rational functions, these expressions present great opportunities for broadening the scope of the analysis by…
Descriptors: Physics, Scientific Concepts, Inferences, Science Instruction
Frank, Brian W. – Physics Teacher, 2018
The goal of this paper is to illustrate different ways that cardsorting activities (or "card stacks") can be implemented in the introductory physics classroom, along with various tips and resources for getting started. My first attempt at developing a card stack came about from simply wanting to try out a fun way to change student…
Descriptors: Task Analysis, Problem Sets, Introductory Courses, Physics
Janney, Benjamin A.; Sobotka, Alex J.; Kidd, Aaron E. – Clearing House: A Journal of Educational Strategies, Issues and Ideas, 2022
Despite holding wide-ranging experiences with constant velocity and non-zero acceleration, students wrestling with physical science concepts struggle to demarcate the two distinct characteristics of motion. In fact, this prior experience and loose familiarity with associated terminology often act as an obstacle toward a deep and robust…
Descriptors: Scientific Concepts, Physical Sciences, Motion, Experience
Dean, Kevin – European Journal of Physics Education, 2017
This paper represents a continuation of the theoretical and computational work from an earlier publication, with the present calculations using exactly the same physical values for the lengths L (0.435 m - 2.130 m) for the conical pendulum, mass m = 0.1111 kg, and with the local value of the acceleration due to gravity g = 9.789 ms[superscript…
Descriptors: Physics, Science Instruction, Graphs, Equations (Mathematics)
A Comparison between Reported and Enacted Pedagogical Content Knowledge (PCK) about Graphs of Motion
Mazibe, Ernest N.; Coetzee, Corene; Gaigher, Estelle – Research in Science Education, 2020
This paper reports a case study of four grade 10 physical sciences teachers' PCK about graphs of motion. We used three data collection strategies, namely teachers' written accounts, captured by the content representation (CoRe) tool, interviews and classroom observations. We conceptualised the PCK displayed in the CoRe tool and the interviews as…
Descriptors: Case Studies, Pedagogical Content Knowledge, Grade 10, Science Teachers
Stoeckel, Marta R. – Science Teacher, 2018
Along-standing energy lab involves dropping bouncy balls and measuring their rebound heights on successive bounces. The lab demonstrates a situation in which the mechanical energy of a system is not conserved. Although students enjoyed the lab, the author wanted to deepen their thinking about energy, including the connections to motion, with a new…
Descriptors: Energy, Science Instruction, Scientific Concepts, Misconceptions
Sokolowski, Andrzej – Physics Education, 2017
Graphs in physics are central to the analysis of phenomena and to learning about a system's behavior. The ways students handle graphs are frequently researched. Students' misconceptions are highlighted, and methods of improvement suggested. While kinematics graphs are to represent a real motion, they are also algebraic entities that must satisfy…
Descriptors: Graphs, Physics, Science Instruction, Misconceptions