Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 14 |
Descriptor
Author
Amanda Rae Buchberger | 1 |
Angie E. Xu | 1 |
Anslyn, Eric V. | 1 |
Beckham, Josh T. | 1 |
Bowser, James R. | 1 |
Brian J. Esselman | 1 |
Cara E. Schwarz | 1 |
Carl Salter | 1 |
Carla Morais | 1 |
Chamberlain, Julia M. | 1 |
Clark, Ted M. | 1 |
More ▼ |
Publication Type
Journal Articles | 17 |
Reports - Descriptive | 10 |
Reports - Research | 4 |
Guides - Classroom - Teacher | 2 |
Reports - Evaluative | 2 |
Education Level
Higher Education | 10 |
Postsecondary Education | 7 |
Audience
Teachers | 2 |
Practitioners | 1 |
Location
Texas | 1 |
Washington | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip P. Lampkin; Angie E. Xu; Brian J. Esselman; Cara E. Schwarz; Sebastian D. Thompson; Samuel H. Gellman; Nicholas J. Hill – Journal of Chemical Education, 2024
Synthesis of (Z)-alkenes is challenging because the (E) stereoisomers are usually more stable. Energy transfer photocatalysis has emerged as an efficient strategy for (E) [right arrow] (Z) alkene isomerization. We report the development of an advanced undergraduate laboratory experiment that introduces students to contemporary organic…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Synthesis
Steven M. Singleton; Craig M. Teague; Carl Salter – Journal of Chemical Education, 2022
The principles of process-oriented guided inquiry learning (POGIL) are applied to the analysis of the emission spectrum of atomic hydrogen. Over the course of three learning cycles, students construct the hydrogen atom's energy level diagram and assign quantum numbers using their measurements of the Balmer series plus additional information on the…
Descriptors: Chemistry, Science Instruction, Nuclear Energy, Quantum Mechanics
Sarah E. Shaner; Kari L. Stone – Journal of Chemical Education, 2023
A Fourier transform infrared (FTIR) experiment appropriate for an upper-level undergraduate laboratory such as chemical instrumentation is described. Students collect FTIR spectra of four protio-solvents and their deuterated analogues. In addition to qualitatively observing C-H and O-H peaks shift to lower energy upon deuteration, students apply a…
Descriptors: Undergraduate Students, Spectroscopy, Chemistry, Science Instruction
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles
Jones, Oliver A. H.; Stevenson, Paul G.; Hameka, Simone C.; Osborne, Dale A.; Taylor, Patrick D.; Spencer, Michelle J. S. – Journal of Chemical Education, 2021
The use of three-dimensional printing in chemistry education has expanded greatly in the past 10 years. The technique has been used to demonstrate a range of concepts including molecular structure, orbitals, and point groups; to produce chemical equipment such as cuvettes and columns; and even to print out mathematical shapes and functions. Here,…
Descriptors: Science Instruction, Chemistry, Spectroscopy, Printing
Malinak, Steven M.; Hertzog, Jerald E.; Pacilio, Julia E.; Polvani, Deborah A. – Journal of Chemical Education, 2019
Laboratory experiments that offer interdisciplinary experiences for students are appealing and are increasingly popular additions to undergraduate chemistry curricula. Students can capitalize on their knowledge of multiple areas of chemistry while working through an application, and this fosters the development of progressive problem-solving…
Descriptors: Laboratory Experiments, Models, Undergraduate Students, College Science
D'Ambruoso, Gemma D.; Cremeens, Matthew E.; Hendricks, Brett R. – Journal of Chemical Education, 2018
Instructional videos have been prepared using Adobe Captivate software to create animated tutorials to capture instrument and molecular modeling software simulations and to allow for increased independent hands-on instrument use by students and faster training for instructors and teaching assistants. The videos are available on YouTube and can be…
Descriptors: Animation, Computer Software, Student Surveys, Computer Simulation
Ghanem, Eman; Long, S. Reid; Rodenbusch, Stacia E.; Shear, Ruth I.; Beckham, Josh T.; Procko, Kristen; DePue, Lauren; Stevenson, Keith J.; Robertus, Jon D.; Martin, Stephen; Holliday, Bradley; Jones, Richard A.; Anslyn, Eric V.; Simmons, Sarah L. – Journal of Chemical Education, 2018
Innovative models of teaching through research have broken the long-held paradigm that core chemistry competencies must be taught with predictable, scripted experiments. We describe here five fundamentally different, course-based undergraduate research experiences that integrate faculty research projects, accomplish ACS accreditation objectives,…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Clark, Ted M.; Chamberlain, Julia M. – Journal of Chemical Education, 2014
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Descriptors: Simulation, Science Laboratories, Science Instruction, Molecular Structure
Grushow, Alexander – Journal of Chemical Education, 2011
A rationale for the removal of the hybrid atomic orbital from the chemistry curriculum is examined. Although the hybrid atomic orbital model does not accurately predict spectroscopic energies, many chemical educators continue to use and teach the model despite the confusion it can cause for students. Three arguments for retaining the model in the…
Descriptors: Chemistry, Science Instruction, Science Curriculum, Nuclear Energy
Meighan, Michelle; MacNeil, Joseph; Falconer, Renee – Journal of Chemical Education, 2008
The relationship between pH and the aqueous solubility of heavy metals is explored by considering the environmental impact of acidic mine drainage. Acid mine drainage is an important environmental concern in many areas of the United States. Associated with coal mining in the East and hard rock mining in the West, the acidity originates primarily…
Descriptors: Mining, Chemistry, Environment, Metallurgy
Montgomery, Craig D. – Journal of Chemical Education, 2007
An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…
Descriptors: Teaching Methods, Interaction, Chemistry, Science Experiments
Russo, Sal; Gentile, Lisa – Journal of Chemical Education, 2006
A project module designed for biochemistry or cellular and molecular biology student which involves determining the secondary structure of Bacillus circulans xylanase (BCX) by circular dichroism (CD) spectroscopy under conditions that compromise its stabilizing intramolecular forces is described. The lab model enhanced students knowledge of the…
Descriptors: Biochemistry, Molecular Biology, Chemistry, Science Instruction

Solomon, Sally; Hur, Chinhyu – Journal of Chemical Education, 1995
Encourages the incorporation into lecture of live experiments that can be predicted or interpreted with abstract models. A demonstration is described where the position of the predominant peak of 1,1'-diethyl-4,4'-cyanine iodide is measured in class using an overhead projector spectrometer, then predicted using the model of a particle in a…
Descriptors: Chemical Analysis, Chemistry, Demonstrations (Science), Experiential Learning
Previous Page | Next Page ยป
Pages: 1 | 2