Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 31 |
Since 2006 (last 20 years) | 88 |
Descriptor
Motion | 116 |
Problem Solving | 116 |
Science Instruction | 116 |
Physics | 78 |
Scientific Concepts | 44 |
Teaching Methods | 41 |
Equations (Mathematics) | 39 |
Scientific Principles | 36 |
Mechanics (Physics) | 35 |
College Science | 29 |
Science Education | 23 |
More ▼ |
Source
Author
McCloskey, Michael | 3 |
Atkin, Keith | 2 |
De Luca, R. | 2 |
Essen, Hanno | 2 |
Pendrill, Ann-Marie | 2 |
Abdulla, Shyma Usman | 1 |
Abdullah, Helmi | 1 |
Adams, Deanne M. | 1 |
Ahtee, Maija, Ed. | 1 |
Amor dos Santos, Susana | 1 |
Anna Koumara | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 32 |
Secondary Education | 16 |
High Schools | 14 |
Postsecondary Education | 11 |
Elementary Education | 6 |
Grade 8 | 6 |
Elementary Secondary Education | 5 |
Grade 6 | 5 |
Grade 7 | 5 |
Middle Schools | 5 |
Grade 4 | 4 |
More ▼ |
Audience
Teachers | 28 |
Practitioners | 12 |
Students | 5 |
Researchers | 3 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 7 |
Assessments and Surveys
What Works Clearinghouse Rating
Sinkovits, Daniel Wilhelm – Physics Teacher, 2022
The cross diagram is a way to illustrate and plan the solutions for all kinds of constant-acceleration kinematics problems--including projectile motion, multistage, and multiple-object problems. The cross diagram arranges the kinematic variables in a logical way, making the kinematic relationships between them easy to identify. Combined with a…
Descriptors: Science Instruction, Mechanics (Physics), Visual Aids, Motion
Forringer, Edward – Physics Teacher, 2021
When authoring physics problems, professors may develop an intuition for how much information they need to provide such that the problem has a unique answer and is not over constrained. It is an open question as to whether using intuition leads to a sufficiently broad range of problems. In this paper we discuss a systematic way of authoring…
Descriptors: Motion, Physics, Science Instruction, College Science
Chong, Zhiwei; Wu, Zhuoyi; Wei, Yajun – Physics Education, 2022
The motion equations of a body under gravity and resistance linearly dependent on speed are usually analysed by solving differential equations. In this paper we report a derivation not explicitly involving differential equations but instead based on some elementary mathematical operations. The derivation uses only knowledge covered in a typical…
Descriptors: Motion, Equations (Mathematics), Physics, Science Instruction
Daniel A. Martens Yaverbaum – ProQuest LLC, 2024
This study investigated evidence of how students' mental models of fundamental kinematic relations evolved (i.e., developed cognitively over time) as observed during an introductory course in calculus-based classical mechanics. The core of the curriculum is based on a claim known as Galileo's principle of relativity. The course material comprised…
Descriptors: Schemata (Cognition), Motion, Physics, Science Education
De Luca, R.; Faella, O. – Physics Education, 2022
The static equilibrium properties of a spool, resting on an incline and subject to the tension exerted by a string wrapped around the core cylinder, are studied by means of Newtonian mechanics. The overall behaviour of this system is imagined to be similar to that of a doggie kept on a leash. Starting from the well-known mechanical properties of…
Descriptors: Science Instruction, Mechanics (Physics), Inquiry, Scientific Concepts
Anna Koumara; Michael Bakaloglou; Hariton M. Polatoglou – World Journal of Education, 2024
Eleven high school students participated in a one-week STEM summer camp focused on designing and building parachutes to deliver fragile objects safely. Using the Engineering Design Process (EDP) as a framework, students explored how canopy size affects performance. They applied physics concepts such as terminal velocity, forces, and acceleration,…
Descriptors: Foreign Countries, High School Students, Summer Science Programs, Physics
Rovšek, Barbara; Žigon, Sašo – Physics Teacher, 2021
This paper addresses a popular topic in science teaching and competitions for primary and secondary school students. Experiments with colliding coins are relatively easy to perform and therefore popular in science lessons. We used the idea in the science competition we organized for pupils aged 6 to 13 years.7 The science competition is based on a…
Descriptors: Physics, Science Instruction, Teaching Methods, Elementary School Students
Joseph, Toby – Physics Education, 2021
Problems involving rotating systems analysed from an inertial frame, without invoking fictitious forces, is something that freshman students find difficult to understand in an introductory mechanics course. In this article we try to see what could be the factors that lead to this difficulty and propose a set of arguments that could be used to…
Descriptors: Mechanics (Physics), Motion, Scientific Concepts, Introductory Courses
Atkin, Keith – Physics Education, 2019
This paper shows how a freely downloadable and powerful software package, "SMath Studio," can be used to model physical systems in physics teaching. The software can form the basis of lecture demonstrations by teachers or can be used individually by students working in an educational environment or on their own home computers.
Descriptors: Physics, Science Instruction, Problem Solving, Scientific Concepts
Kiliç, Cihan; Özaydinli-Tanriverdi, Belgin – Education Quarterly Reviews, 2022
The integration of mathematics and science in teaching facilitates student learning, engagement, motivation, problem-solving, critical thinking, and real-life application. Although curriculum integration is theoretically desirable for many educators, what to integrate and how to integrate are often the big questions facing teachers working within…
Descriptors: Mathematics Instruction, Science Instruction, Motion, Grade 9
Iwuanyanwu, Paul Nnanyereugo – Journal of Education in Science, Environment and Health, 2019
The present study explores students' understanding of calculus-based kinematics (henceforth, CBK), in which argumentation is taken as the sequence of the modes of fostering reasoning and problem-solving. The investigation stresses the importance of arguments students bring to the learning situation of CBK and recognizes the active construction of…
Descriptors: Calculus, Mechanics (Physics), Motion, Problem Solving
Atkin, Keith – Physics Education, 2020
In this paper it is demonstrated how the free, and easily downloadable, software package called SMath Studio can be used to set up a model of alpha-particle scattering. The basic physics of the motion of an alpha-particle in the nuclear coulomb field is used to produce a simple stepwise computer algorithm which, in conjunction with a novel set of…
Descriptors: Computer Software, Physics, Science Instruction, Mathematics Instruction
Redish, Edward F. – Physics Teacher, 2021
An important step in learning to use math in science is learning to see symbolic equations not just as calculational tools, but as ways of expressing fundamental relationships among physical quantities, of coding conceptual information, and of organizing physics knowledge structures. In this paper, I propose "anchor equations" as a…
Descriptors: Physics, Science Instruction, Teaching Methods, Equations (Mathematics)
Pendrill, Ann-Marie – Physics Education, 2020
Students often use incoherent strategies in their problem solving involving force and motion, as revealed, e.g. when they are asked to draw force diagrams for amusement rides involving circular motion, whether in horizontal or vertical planes. Depending on the questions asked, assignments involving circular motion can reveal different types of…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Balta, Nuri – Physics Education, 2018
One way to ease the solution of physics problems is to visualize the situation. However, by visualization we do not mean the pictorial representation of the problem. Instead, we mean a sketch for the solution of the problem. In this paper a new approach to solving physics problems, based on decomposing the problem into with and without gravity, is…
Descriptors: Physics, Visualization, Science Instruction, Problem Solving