Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 7 |
Descriptor
Chemical Engineering | 27 |
Science Curriculum | 27 |
Science Instruction | 27 |
College Science | 24 |
Engineering Education | 18 |
Higher Education | 16 |
Science Education | 16 |
Course Descriptions | 13 |
Course Content | 7 |
Chemistry | 5 |
Science and Society | 5 |
More ▼ |
Source
Chemical Engineering Education | 22 |
Cell Biology Education | 1 |
Chemical and Engineering News | 1 |
Journal of Chemical Education | 1 |
Journal of STEM Education:… | 1 |
Author
Agrawal, Pradeep K | 1 |
Baah, David | 1 |
Bartusiak, R. Donald | 1 |
Bhatia, Hina | 1 |
Bradley, James | 1 |
Brewster, B. S. | 1 |
Curtis, Christine | 1 |
Daughtrey, Terrell | 1 |
DeCoursey, W. J. | 1 |
Douglas, J. M. | 1 |
Eckert, Roger E. | 1 |
More ▼ |
Publication Type
Journal Articles | 26 |
Reports - Descriptive | 24 |
Opinion Papers | 4 |
Guides - Classroom - Teacher | 2 |
Reports - Research | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 6 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Practitioners | 16 |
Researchers | 2 |
Students | 2 |
Teachers | 2 |
Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Timothy M. Shenk; Nian Liu – Chemical Engineering Education, 2024
While innovation commonly stems from the Entrepreneurial Mindset (EM), its integration within chemical engineering curricula has been notably limited. However, a shift is occurring as both private and public initiatives are now directing resources and attention toward equipping students for prosperous careers. This paper delineates the successful…
Descriptors: Chemical Engineering, Entrepreneurship, Science Instruction, Science Curriculum
Lo, Roger C.; Bhatia, Hina; Venkatraman, Rahul; Jang, Larry K. – Chemical Engineering Education, 2015
Microfluidics involves the study of the behavior of fluids at microscale, fluid manipulations, and the design of the devices that can effectively perform such manipulations. We are developing two new elective courses to include microfluidics in our curriculum at CSULB. Herein, we present the results of the first course, Microfabrication and…
Descriptors: Chemical Engineering, Science Instruction, College Science, Science Curriculum
Gupta, Anju – Journal of STEM Education: Innovations and Research, 2015
This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…
Descriptors: Chemical Engineering, Science Instruction, High Schools, Secondary School Teachers
Engaging Undergraduates in an Interdisciplinary Program: Developing a Biomaterial Technology Program
Liang, Jia-chi; Kung, Shieh-shiuh; Sun, Yi-ming – Chemical Engineering Education, 2009
Yuan Ze University targeted Biomaterials Science and developed a curriculum related to Biotechnology, Biochemical Engineering, and Biomaterials for engineering students to cultivate talents for both engineering and biotechnology. After several years of operation, recruiting students has succeeded, and students are satisfied with the course design…
Descriptors: Engineering Education, Biotechnology, Chemical Engineering, Interdisciplinary Approach
Smith, Tamara Floyd; Baah, David; Bradley, James; Sidler, Michelle; Hall, Rosine; Daughtrey, Terrell; Curtis, Christine – Chemical Engineering Education, 2010
A Synchronous Distance Education (SDE) course, jointly offered by Auburn University, Tuskegee University and Auburn University at Montgomery, introduced non-science majors to the concepts of nanoscience. Lectures originated from each of the three campuses during the semester, and video conferencing equipment allowed students at all three campuses…
Descriptors: Distance Education, Synchronous Communication, Course Descriptions, Lecture Method
Harris, Andrew T. – Chemical Engineering Education, 2009
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Descriptors: Feedback (Response), Problem Based Learning, Course Evaluation, Foreign Countries
O'Connor, Kim C. – Chemical Engineering Education, 2007
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
Descriptors: Introductory Courses, Biotechnology, Chemical Engineering, Science Instruction
Reingold, I. David – Cell Biology Education, 2005
In this essay, the author describes to biologists the advantages of organic-first curriculum, on the assumption that few biologists are regular readers of "Journal of Chemistry Education" and therefore are probably unaware of the method for integrating chemistry and biology curricula. The author begins with the assumption that the majority of…
Descriptors: Chemistry, Biology, Chemical Engineering, Science Instruction

Lee, William E., III – Chemical Engineering Education, 1989
Develops a course which would give students a chance to think critically, be exposed to recent developments including applications to other fields, and be exposed to the general field of the philosophy of science. Provides a course outline, required and referenced textbooks, and selected journal articles. (YP)
Descriptors: Chemical Engineering, College Science, Course Descriptions, Course Objectives

Douglas, J. M.; Kirkwood, Robert L. – Chemical Engineering Education, 1989
Describes the spectrum of process design problems. Suggests a methodology for teaching some concepts used in design, including the types of processes considered and their designs, new tools useful in conceptual design, and a strategy for developing conceptual designs. (YP)
Descriptors: Chemical Engineering, College Science, Course Descriptions, Course Organization

Klusacek, K.; And Others – Chemical Engineering Education, 1989
Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)
Descriptors: Chemical Engineering, Chemical Equilibrium, Chemical Reactions, College Science

Skaates, J. Michael – Chemical Engineering Education, 1987
Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Course Content

Takoudis, Christos G. – Chemical Engineering Education, 1987
Describes a 15-week course in the fundamentals of microelectronics processing in chemical engineering, which emphasizes the use of very large scale integration (VLSI). Provides a listing of the topics covered in the course outline, along with a sample of some of the final projects done by students. (TW)
Descriptors: Chemical Engineering, College Science, Computer Uses in Education, Course Content

Fasching, James L.; Erickson, Bette LaSere – Journal of Chemical Education, 1985
Five years ago, an introductory chemistry course for chemists and chemical engineers was redesigned to stress the scientific method, problem-solving, and reasoning skills. Describes: (1) changes made in the course; (2) impacts on student achievement; and (3) student ratings of the course. (JN)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Descriptions

McCready, Mark J.; Leighton, David T. – Chemical Engineering Education, 1987
Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)
Descriptors: Chemical Engineering, College Science, Course Content, Course Descriptions
Previous Page | Next Page ยป
Pages: 1 | 2