NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)8
Audience
Practitioners3
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang – Journal of Science Education and Technology, 2016
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…
Descriptors: Science Instruction, Physics, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C. – Journal of Chemical Education, 2015
For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…
Descriptors: Chemistry, Statistical Analysis, Metallurgy, Hazardous Materials
Peer reviewed Peer reviewed
Direct linkDirect link
Mott, Jenna R.; Munson, Paul J.; Kreuter, Rodney A.; Chohan, Balwant S.; Sykes, Danny G. – Journal of Chemical Education, 2014
The teaching of instrumental analysis for many small colleges and high schools continues to be stymied by high-cost, complicated maintenance, high power requirements, and often the sheer bulk of the instrumentation. Such issues have led us to develop inexpensive instruments as part of a SMILE initiative (small, mobile instruments for laboratory…
Descriptors: Measurement Equipment, Chemistry, Electronics, Instrumentation
Peer reviewed Peer reviewed
Direct linkDirect link
Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza – Journal of Chemical Education, 2013
Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…
Descriptors: College Science, Spectroscopy, Science Instruction, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R. – Journal of College Science Teaching, 2011
Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…
Descriptors: Undergraduate Students, Student Attitudes, Spectroscopy, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Toral, S. L.; Barrero, F.; Martinez-Torres, M. R.; Gallardo, S.; Duran, M. J. – IEEE Transactions on Education, 2009
The prevailing tendency in modern university reforms is towards "how people learn," following a learner-centered approach in which the learner is the main actor of the teaching-learning process. As a consequence, one of the key indicators of the teaching-learning process is the measurement of learner satisfaction within the classroom.…
Descriptors: Surveys, Course Descriptions, Science Instruction, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cagiltay, N. E.; Aydin, E.; Oktem, R.; Kara, A.; Alexandru, M.; Reiner, B. – IEEE Transactions on Education, 2009
This paper discusses the results of a study of the requirements for developing a remote RF laboratory. This study draws on the perspectives of educators in university electrical engineering departments and in technical colleges, on the teaching of the radio frequency (RF) domain. The study investigates how these educators would like the technical…
Descriptors: Foreign Countries, Engineering Education, Technical Institutes, Science Laboratories
Peer reviewed Peer reviewed
Baum, Rudy – Chemical and Engineering News, 1982
One undergraduate chemistry laboratory at the California Institute of Technology is described, including goals of the laboratory curriculum: (1) emphasis on modern instrumental methods of analysis, separation, and characterization; (2) integration of organic/inorganic experiments; and (3) preparing students in two years to begin work in a research…
Descriptors: Chemistry, College Science, Higher Education, Instrumentation
Cancilla, Devon A.; Albon, Simon P. – Journal of Asynchronous Learning Networks, 2008
How to move science-based labs online has been one of the main obstacles associated with the development of online science programs. In the spring of 2006 and again in 2007, we organized online workshops broadly based around the central theme of Moving the Lab Online. The objective of these workshops was to provide a forum for the exchange of…
Descriptors: Science Programs, Online Courses, Science Laboratories, Workshops
Peer reviewed Peer reviewed
Baran, Jit; Currie, Ron; Kennepohl, Dietmar – Journal of Chemical Education, 2004
The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…
Descriptors: Instrumentation, Science Laboratories, Computer Software, Investigations
Peer reviewed Peer reviewed
Cancilla, Devon A. – Journal of Chemical Education, 2004
Greater access to scientific instrumentation, courses, and supporting materials through the Internet and Integrated Laboratory Network (ILN) has the potential to profoundly change the way in which instrumental sciences are taught. Increased access to instrumentation will provide better opportunities for students to learn and practice instrumental…
Descriptors: Instrumentation, Undergraduate Study, Teaching Methods, Chemistry
Peer reviewed Peer reviewed
Phillips, John S.; Leary, James J. – Journal of Chemical Education, 1986
Describes an experiment combining qualitative and quantitative information from hydrogen nuclear magnetic resonance spectra. Reviews theory, discusses the experimental approach, and provides sample results. (JM)
Descriptors: Chemistry, College Science, Higher Education, Instrumentation
Peer reviewed Peer reviewed
Maderia, Vitor M. C.; Pires, Euclides M. V. – Journal of Chemical Education, 1986
Discusses the value of electrophoresis in the fields of protein chemistry and biochemistry. Describes how to build an inexpensive electrophoresis setup for use in either research or teaching activities. Details the construction of both the separating device and the power supply. (TW)
Descriptors: Building Plans, Chemical Analysis, Chemistry, College Science
Peer reviewed Peer reviewed
Fisher, Tom Lyons; McGinnis, James S. – Journal of Chemical Education, 1986
Describes the construction of a low-cost (about $70.00) alternative to the commercial fraction collector. Outlines the separate parts of the collector and provides a schematic of electronic circuitry of the instrument. Lists special items required for the development of this project. (TW)
Descriptors: Building Plans, Chemistry, College Science, Diagrams