Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 17 |
Since 2006 (last 20 years) | 148 |
Descriptor
Magnets | 154 |
Science Instruction | 154 |
Scientific Principles | 154 |
Physics | 115 |
Energy | 98 |
College Science | 60 |
Science Experiments | 51 |
Equations (Mathematics) | 47 |
Scientific Concepts | 47 |
Motion | 41 |
Teaching Methods | 35 |
More ▼ |
Source
Author
Donoso, Guillermo | 3 |
Kraftmakher, Yaakov | 3 |
Ladera, Celso L. | 3 |
Smith, Glenn S. | 3 |
Baker, Blane | 2 |
Behroozi, F. | 2 |
Campos, I. | 2 |
Cheng, Meng-Fei | 2 |
Donoso, G. | 2 |
Gsponer, Andre | 2 |
Heras, Jose A. | 2 |
More ▼ |
Publication Type
Education Level
Higher Education | 65 |
Postsecondary Education | 14 |
High Schools | 13 |
Secondary Education | 8 |
Elementary Education | 2 |
Grade 12 | 2 |
Grade 11 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 6 | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Álvaro Suárez; Arturo C. Marti; Kristina Zuza; Jenaro Guisasola – Physical Review Physics Education Research, 2024
We investigate learning difficulties among second-year students in electromagnetism courses when they apply Ampère-Maxwell's law. Using phenomenography, we analyzed written answers from 65 undergraduate physics students to four questions on Ampère's and Ampère-Maxwell's laws. We complemented our research by interviewing 12 students. To design the…
Descriptors: Learning Problems, Undergraduate Students, Energy, Magnets
Hermann Härtel – European Journal of Physics Education, 2021
The question of whether Faraday's flux law is universal or whether there are exceptions has long been controversial. This discussion seemed to have recently concluded in favor of the generality of Faraday's Flux Law. The present article raises this question again with the aid of some rather simple measurements carried out on a Faraday generator.…
Descriptors: Science Instruction, Scientific Principles, Measurement, Energy
McCaughin, Patrick; Ford, Lyle – Physics Teacher, 2021
Since its debut in Elihu Thomson's 1886 article "Novel Phenomena of Alternating Currents," the Thomson jumping ring apparatus has been a popular and captivating demonstration of magnetic induction. The components are quite simple. There is a solenoid, an iron core, and a ring. The demonstration usually begins with the professor saying…
Descriptors: Physics, Magnets, Scientific Concepts, Demonstrations (Educational)
Härtel, Hermann – European Journal of Physics Education, 2020
Based on a publication of Assis, where the most straightforward and oldest motor is described, first constructed by Ampère, a simple experiment is added to demonstrate once again, why published explanations about its principle of operation and especial the kind how Newton's 3rd principle is used has to be rejected. Ampère's description of his…
Descriptors: Science Experiments, Scientific Principles, Physics, Magnets
Acero, Jesus; Carretero, Claudio – IEEE Transactions on Education, 2021
Contribution: This article proposes a comprehensive graduate course on magnetic design that addresses existing gaps in current power electronics (PEs) education, provides theoretical foundations and hands-on skills, and matches syllabi coverage with current societal needs for electronic energy conversion. Background: A growing worldwide interest…
Descriptors: Graduate Study, College Science, Magnets, Power Technology
Behroozi, F. – Physics Teacher, 2019
Many of the old demonstrations in electricity and magnetism can be performed more effectively and with greater visual appeal by using newly available neodymium magnets and color LEDs. For this reason several demonstrations, commonly used for teaching electromagnetic induction and Lenz's law, have received renewed attention in recent years. In…
Descriptors: Physics, Science Instruction, Introductory Courses, Magnets
Behroozi, F. – Physics Teacher, 2018
With the wide availability of strong neodymium magnets, the slow and stately fall of a magnet through a conducting pipe has become a favorite classroom demo for teaching electromagnetic induction, Newton's third law, and Lenz's law. Since Lenz's law is conceptually difficult for some students, several authors have used this demo to explore in…
Descriptors: Magnets, Science Instruction, Scientific Principles, Energy
Médjahdi, Kader – Physics Teacher, 2019
Measuring magnetic induction is occasionally performed by our students during their academic training in physics. Among the various methods used to measure it, the Hall effect is the most common and widespread. Another way consists of employing an electronic flux-meter. It is constituted by a small flat coil (SFC) connected to the input of an…
Descriptors: Magnets, Physics, Science Instruction, Teaching Methods
Green, Michael – Physics Education, 2018
It can readily be demonstrated that when a low frequency alternating voltage is applied to an iron-core coil the impedance is much higher than the direct current resistance of the coil. To understand how the high level of impedance arises it is necessary to explain how magnetic and electrical induction give rise to a current in the coil that…
Descriptors: Science Instruction, Energy, Magnets, Equations (Mathematics)
Giulia Polverini; Jakob Melin; Elias Önerud; Bor Gregorcic – Physical Review Physics Education Research, 2025
[This paper is part of the Focused Collection in Artificial Intelligence Tools in Physics Teaching and Physics Education Research.] Artificial intelligence-based chatbots are increasingly influencing physics education because of their ability to interpret and respond to textual and visual inputs. This study evaluates the performance of two large…
Descriptors: Artificial Intelligence, Computer Software, Technology Integration, Physics
Duffy, Andrew – Physics Teacher, 2018
This paper describes a pictorial approach to Lenz's law that involves following four steps and drawing three pictures to determine the direction of the current induced by a changing magnetic flux. Lenz's law accompanies Faraday's law, stating that, for a closed conducting loop, the induced emf (electromotive force) created by a changing magnetic…
Descriptors: Physics, Scientific Principles, Magnets, Motion
Reeder, S.; Wilkie, K.; Kelly, T. J.; Boullard, J. S. – Physics Education, 2019
In this article, we outline a demonstration that is relatively simple to perform but whose results require a quite subtle interpretation of Faraday's Law. When a very small magnet is dropped through a coil it can tumble as it falls leading to 'spikes' in the measured emf signal. The experiment, and demonstration, can be used in an introductory…
Descriptors: Physics, Magnets, Science Experiments, Scientific Concepts
Yan, Peizheng; Xia, Haojie; Li, Jianquan; Wang, Yonghong; Wei, Yongqing; Ji, Feng; Shu, Shuangbao – Physics Teacher, 2019
Light polarization, which is the direction of electromagnetic field oscillation, provides information that is highly different from that of spectral and intensity images and thus can enhance various fields of optical metrology. Polarization imaging can be also used by combining polarization and imaging, thereby providing polarization and spatial…
Descriptors: Telecommunications, Handheld Devices, Light, Energy
Soares, A. A.; Reis, T. O. – Physics Education, 2019
Here we present an inexpensive proposal to experimentally study Faraday's law of induction. The experiment uses low-cost materials, a computer with a sound card and a smartphone, both running free software. A value proportional to the induced electromotive force is measured with the computer's sound card and the data related to the magnetic field…
Descriptors: Science Instruction, Scientific Principles, Magnets, Energy
Bryant, Wesley; Baker, Blane – Physics Education, 2016
The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…
Descriptors: Electronic Equipment, Class Activities, Scientific Concepts, Scientific Principles