NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Danielle A. Guarracino; Joseph L. Baker; J. Lynn Gazley – Journal of College Science Teaching, 2025
Having a deeper understanding of molecules in their structural forms allows students to grasp biochemical and general chemical concepts in a more profound manner. Through the use of visualization software, we have shown that students gain confidence and insight into the chemical workings of molecular structure and can then utilize this knowledge…
Descriptors: Science Education, Undergraduate Students, Biochemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Ahlia Khan-Trottier – Biochemistry and Molecular Biology Education, 2024
The COVID-19 pandemic has forced a shift in thinking regarding the safe delivery of wet laboratory courses. While we were fortunate to have the capacity to continue delivering wet laboratory experiments with physical distancing and other measures in place, modifications to the mechanisms of delivery within courses were necessary to minimize risk…
Descriptors: Computer Software, Science Laboratories, Science Instruction, Student Journals
Peer reviewed Peer reviewed
Direct linkDirect link
Mayes, Howard; Wong, Chung F. – Journal of Chemical Education, 2018
A new program, ECEP2D, for simulating the one-dimensional (1D) and two-dimensional (2D) patterns of the gel electrophoresis of a protein after it has been digested by one or more enzymes is introduced. With ECEP2D, students can gain deeper insights into gel electrophoresis by performing hands-on simulations. For example, students can visualize how…
Descriptors: Computer Software, Computer Simulation, Comparative Analysis, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Vater, Ashley; Mayoral, Jaime; Nunez-Castilla, Janelle; Labonte, Jason W.; Briggs, Laura A.; Gray, Jeffrey J.; Makarevitch, Irina; Rumjahn, Sharif M.; Siegel, Justin B. – Journal of Chemical Education, 2021
Including undergraduate research in STEM education is a well-supported and growing high-impact practice that has been made much more scalable through integrating these experiences into the classroom. Here we describe a new biochemistry Course-based Undergraduate Research Experience (CURE) that follows a design-to-data workflow with a strong…
Descriptors: Science Instruction, College Science, Undergraduate Study, Student Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coan, Heather A.; Goehle, Geoff; Youker, Robert T. – Journal of Teaching and Learning, 2020
The commercialization of virtual reality (VR) hardware has enabled the use of VR as an educational tool. We describe how a VR platform was used to create molecular visualizations using standard PDB files with the purpose of delivering biochemistry and cellular biology lessons for undergraduates. Specifically, we describe two new software modules,…
Descriptors: Biochemistry, Molecular Biology, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lawton, Jeffrey A.; Prescott, Noelle A.; Lawton, Ping X. – Biochemistry and Molecular Biology Education, 2018
We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the "ldhA" gene from the yogurt-fermenting bacterium "Lactobacillus bulgaricus," which encodes the enzyme d-lactate dehydrogenase. The molecular…
Descriptors: Molecular Biology, Undergraduate Study, College Science, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Rowe, Laura – Journal of Chemical Education, 2017
An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J. – Journal of Chemical Education, 2015
To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…
Descriptors: Undergraduate Students, Thermodynamics, Biochemistry, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Dias, Albino A.; Pinto, Paula A.; Fraga, Irene; Bezerra, Rui M. F. – Journal of Chemical Education, 2014
In enzyme kinetic studies, linear transformations of the Michaelis-Menten equation, such as the Lineweaver-Burk double-reciprocal transformation, present some constraints. The linear transformation distorts the experimental error and the relationship between "x" and "y" axes; consequently, linear regression of transformed data…
Descriptors: Science Instruction, Science Laboratories, Kinetics, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bagley, James R.; Galpin, Andrew J. – Biochemistry and Molecular Biology Education, 2015
Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex…
Descriptors: Human Body, Cytology, Interdisciplinary Approach, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul – Biochemistry and Molecular Biology Education, 2012
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…
Descriptors: Biochemistry, Computer Software, Spectroscopy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Craig, Paul A.; Michel, Lea Vacca; Bateman, Robert C. – Biochemistry and Molecular Biology Education, 2013
As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of…
Descriptors: Biochemistry, Science Instruction, Visualization, Multimedia Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Deutch, Charles E.; Jurutka, Peter W.; Marshall, Pamela A. – Journal of College Science Teaching, 2008
The authors teach upper-level science courses in cell biology, genetics, and biochemistry at a public, four-year "community university" that serves a demographically diverse population of traditional and nontraditional students. In this article, they describe some of the issues they have found to be particularly significant at their "community…
Descriptors: Textbook Selection, Course Content, Computer Software, Science Instruction
Peer reviewed Peer reviewed
Pastrana-Rios, Belinda – Journal of Chemical Education, 2004
The biochemistry laboratory course is structured such that students work in pairs during the first half of the course. The purpose is to encourage per-peer learning processes during the students' first exposure to the software.
Descriptors: Learning Processes, Biochemistry, Undergraduate Students, Cooperative Learning