NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 57 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Monika Skowron; Sylwia Smarzewska – Journal of Chemical Education, 2024
A new undergraduate thin-layer chromatography laboratory experiment devoted to quantitative determination of disulfiram in Anticol formulation is presented. The proposed activity can be a part of a chromatographic methods of analysis course as well as a general chemistry course. To carry out a quantitative analysis, an image analysis technique was…
Descriptors: Undergraduate Study, Chemistry, Science Education, College Science
Maria Cerrato-Alvarez; Samuel Frutos-Puerto; Eduardo Pinilla-Gil – Journal of Chemical Education, 2024
Calculating analytical uncertainties as a part of method validation is a relevant aspect of field and laboratory practices in instrumental analytical chemistry subjects, which usually require complex algorithms. This work describes the development and didactic use of an automatic and straightforward informatics tool, implemented in an Excel macro,…
Descriptors: Computation, Computer Software, Teaching Methods, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Alison Wallum; Zetai Liu; Joy Lee; Subhojyoti Chatterjee; Lawrence Tauzin; Christopher D. Barr; Amberle Browne; Christy F. Landes; Amy L. Nicely; Martin Gruebele – Journal of Chemical Education, 2023
As data science and instrumentation become key practices in common careers ranging from medicine to agriscience, chemistry as a core introductory course must introduce such topics to students early and at an accessible level. Advanced data acquisition and data science generally require expensive precision instrumentation and massive computation,…
Descriptors: Undergraduate Study, Data Science, Science Laboratories, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Jingjing Qiu; Anneke Moeller; Janet Zhen; Hansen Yang; Lily Din; Nicole Adelstein – Journal of Chemical Education, 2023
An integrated inorganic chemistry laboratory experience focusing on heterogeneous electrocatalysis with nickel (Ni)- and cobalt (Co)-based electrocatalysts is designed for upper-division, major-level chemistry students. In this laboratory, students will be guided through the fabrication of an indium tin oxide (ITO)-coated glass working electrode,…
Descriptors: Programming Languages, Computer Software, Computer Simulation, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Elizabeth S. Thrall; Fernando Martinez Lopez; Thomas J. Egg; Seung Eun Lee; Joshua Schrier; Yijun Zhao – Journal of Chemical Education, 2023
Given the growing prevalence of computational methods in chemistry, it is essential that undergraduate curricula introduce students to these approaches. One such area is the application of machine learning (ML) techniques to chemistry. Here we describe a new activity that applies ML regression analysis to the common physical chemistry laboratory…
Descriptors: Chemistry, Physics, Science Laboratories, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Wolf, Mark E.; Norris, J. Widener; Fynewever, Herb; Turney, Justin M.; Schaefer, Henry F., III – Journal of Chemical Education, 2022
Over the past half century, computational chemistry has evolved from a niche field to a ubiquitous pillar of modern chemical research. Driven by the increased demand for computational chemistry in research settings, the undergraduate curriculum has evolved alongside to ensure that students are well-equipped for modern research. Toward this end,…
Descriptors: Science Instruction, Science Laboratories, Chemistry, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Eder José Assink Junior; Paulo Cesar de Jesus; Endler Marcel Borges – Journal of Chemical Education, 2023
Here, students determine the total protein content in whey protein samples using the Lowry assay. Quantitative analysis was carried out using absorbance measured at 750 nm (standard method) and 96-well-plate digital images obtained using smartphones (proposed method). The proposed method was carried out using two smartphones (1 and 2). Smartphone…
Descriptors: Chemistry, Science Education, Visual Aids, Handheld Devices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chowdhury, Pinaki – Online Submission, 2021
Collecting data on learners' performance in different chemistry contents and analysing them to identify their knowledge and understanding in related content areas is a major task of Chemistry Education Research. The data collection process on the learners' content knowledge and understanding of content knowledge requires a standard measuring tool.…
Descriptors: Data Collection, Standards, Chemistry, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ronald Soong; Katelyn Downey; Arvin Moser; Pablo Monje; Amy Jenne; Rajshree Ghosh Biswas; Monica Bastawrous; Rudraksha Majumdar; Daniel Henryk Lysak; Antonio Adamo; Benjamin Goerling; Venita Decker; Falko Busse; Santiago Dominguez; Effiette Sauer; Svetlana Mikhaylichenko; Vivienne Luk; Andre´ J. Simpson – Journal of Chemical Education, 2022
The recent popularity of benchtop (BT) NMR systems has prompted its applications in undergraduate laboratories around the world. Owing to their low maintenance cost, due to the lack of a superconducting magnetic core, and simple operation, these BT NMR systems can fulfill many of the learning objectives outlined in the undergraduate organic…
Descriptors: Undergraduate Study, College Science, Science Laboratories, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Monsurat M. Lawal; Tugba G. Kucukkal – Journal of Chemical Education, 2024
An undergraduate-level Computational Chemistry project was incorporated initially into a Physical Chemistry course and then into the laboratory curriculum in the subsequent application. Before the introduction of the project, the lectures covered quantum chemistry, spectroscopy, and kinetics while simultaneously including computational chemistry…
Descriptors: Chemistry, Science Instruction, Computation, Active Learning
Peer reviewed Peer reviewed
Direct linkDirect link
David L. Myers; Marc Hill; Brooke Baughman; Eugene T. Smith – Journal of Chemical Education, 2023
This exercise encompassed the construction and use of a microcontroller-based laser refractometer. The instrument, which does not require a high skill level to build, primarily consisted of a line laser, optical sensor, several 3-D printed parts and printed circuit boards, and a microcontroller development board. Construction and testing of the…
Descriptors: Open Education, Lasers, Shared Resources and Services, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Gunderson, Julie E. C.; Mitchell, Dylan W.; Bullis, Ryan G.; Steward, John Q.; Gunderson, William A. – Journal of Chemical Education, 2020
Fused filament fabrication 3D printing is a process by which three-dimensional objects are created by depositing layers of a material onto a hard, flat surface by a robot. It is often referred to as an "additive manufacturing" technique because material is added in successive layers to create an object. Because many scientific…
Descriptors: Chemistry, Science Instruction, Computer Software, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Navarre, Edward C. – Journal of Chemical Education, 2020
A simple computer interface for controlling a compact spectrograph for use as a spectrophotometer in an undergraduate teaching laboratory was developed. The project was implemented on a Raspberry Pi computer which permits the integration of a light source into the software. The interface was written in Python to facilitate modification by the user…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Vargas, Santiago; Zamirpour, Siavash; Menon, Shreya; Rothman, Arielle; Häse, Florian; Tamayo-Mendoza, Teresa; Romero, Jonathan; Sim, Sukin; Menke, Tim; Aspuru-Guzik, Alán – Journal of Chemical Education, 2020
The increasing integration of software and automation in modern chemical laboratories prompts special emphasis on two important skills in the chemistry classroom. First, students need to learn the technical skills involved in modern scientific computing and automation. Second, applying these techniques in practice requires effective collaboration…
Descriptors: Teamwork, Computer Uses in Education, Cooperative Learning, Automation
Peer reviewed Peer reviewed
Direct linkDirect link
Kobayashi, Rika; Goumans, Theodorus P. M.; Carstensen, N. Ole; Soini, Thomas M.; Marzari, Nicola; Timrov, Iurii; Ponce´, Samuel; Linscott, Edward B.; Sewell, Christopher J.; Pizzi, Giovanni; Ramirez, Francisco; Bercx, Marnik; Huber, Sebastiaan P.; Adorf, Carl S.; Talirz, Leopold – Journal of Chemical Education, 2021
The COVID-19 pandemic disrupted chemistry teaching practices globally as many courses were forced online, necessitating adaptation to the digital platform. The biggest impact was to the practical component of the chemistry curriculum--the so-called wet lab. Naively, it would be thought that computer-based teaching laboratories would have little…
Descriptors: COVID-19, Pandemics, Chemistry, Online Courses
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4