Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 7 |
Descriptor
Curriculum Development | 14 |
Science Experiments | 14 |
Science Laboratories | 14 |
Science Instruction | 11 |
Chemistry | 10 |
College Science | 8 |
Science Curriculum | 8 |
Inquiry | 6 |
Higher Education | 5 |
Laboratory Experiments | 4 |
Scientific Concepts | 4 |
More ▼ |
Source
Journal of Chemical Education | 6 |
American Journal of Physics | 2 |
Biochemistry and Molecular… | 1 |
Chemical Engineering Education | 1 |
Journal of Computers in… | 1 |
Journal of Research in… | 1 |
ProQuest LLC | 1 |
TechTrends | 1 |
Author
Publication Type
Journal Articles | 13 |
Reports - Descriptive | 5 |
Reports - Research | 5 |
Dissertations/Theses -… | 1 |
Guides - Classroom - Teacher | 1 |
Guides - Non-Classroom | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 4 |
High Schools | 1 |
Audience
Practitioners | 4 |
Teachers | 4 |
Administrators | 1 |
Location
Virginia | 2 |
District of Columbia | 1 |
Iowa | 1 |
Israel | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Monsurat M. Lawal; Tugba G. Kucukkal – Journal of Chemical Education, 2024
An undergraduate-level Computational Chemistry project was incorporated initially into a Physical Chemistry course and then into the laboratory curriculum in the subsequent application. Before the introduction of the project, the lectures covered quantum chemistry, spectroscopy, and kinetics while simultaneously including computational chemistry…
Descriptors: Chemistry, Science Instruction, Computation, Active Learning
Wheeler, Lindsay B.; Clark, Charles P.; Grisham, Charles M. – Journal of Chemical Education, 2017
Laboratory course redesign and effective implementation of an inquiry-based curriculum can be challenging, particularly when teaching assistants (TAs) are responsible for instruction. Our multiyear redesign of a traditional general chemistry laboratory course has included transitioning to a project based guided inquiry (PBGI) curriculum that…
Descriptors: Science Instruction, Science Laboratories, Chemistry, Science Experiments
Kerstiens, Geri Anne – ProQuest LLC, 2019
Recently, there have been many calls for an increase in instruction on the nature of science (NOS) in schools (i.e. NRC, 1996; NGSS Lead States, 2013). These calls recognize the importance of this topic at all levels of science education, but there is little guidance in terms of how to address it effectively in curricula. Similarly, there have…
Descriptors: Scientific Principles, Science Instruction, Chemistry, Science Laboratories
DeKorver, Brittland K.; Towns, Marcy H. – Journal of Research in Science Teaching, 2016
Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Science Laboratories
Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron – Biochemistry and Molecular Biology Education, 2015
Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…
Descriptors: Undergraduate Students, Biochemistry, Science Laboratories, Inquiry
Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E. – Journal of Chemical Education, 2015
The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…
Descriptors: Science Instruction, College Science, Chemistry, Science Laboratories
Supalo, Cary A.; Mallouk, Thomas E.; Amorosi, Christeallia; Lanouette, James; Wohlers, H. David; McEnnis, Kathleen – Journal of Chemical Education, 2009
A brief overview of the 2007 National Federation of the Blind-Jernigan Institute Youth Slam Chemistry Track, a course of study within a science camp that provided firsthand experimental experience to 200 students who are blind and low-vision, is given. For many of these students, this was their first hands-on experience with laboratory chemistry.…
Descriptors: Visual Impairments, Vision, Chemistry, Science Laboratories

Chen, Hsuan; Ruterbusch, Paul H. – American Journal of Physics, 1979
Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)
Descriptors: College Science, Curriculum Development, Higher Education, Optics

Annett, Clarence H. – American Journal of Physics, 1980
Presents the philosophy and mechanics of a professionally oriented astronomy laboratory for nonscience majors. Design of the laboratory, description of the exercises, and the results of using this approach at the University of Kansas are also described. (HM)
Descriptors: Astronomy, College Science, Curriculum Development, Higher Education

Greenbowe, T. J.; Burke, Kathy A. – TechTrends, 1995
Describes the Iowa General Chemistry Network that was developed to change content, teaching, and learning methods of introductory college chemistry courses. Highlights include using the Iowa Communications Network for distance education and curriculum reform, using the Internet and World Wide Web, and chemistry laboratory experiences and…
Descriptors: Chemistry, Computer Networks, Curriculum Development, Distance Education

Deshpande, Pradeep B.; And Others – Chemical Engineering Education, 1980
Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)
Descriptors: Chemistry, College Science, Curriculum Development, Engineering Education

Kandel, Marjorie; Ikan, Raphael – Journal of Chemical Education, 1989
Provides a point of view that the organic lab is a good place for the student to use and learn problem solving skills while performing the cookbook experiments. Notes that an equilibrium between the theoretical and practical aspects of organic chemistry should be established. (MVL)
Descriptors: Chemistry, College Science, Course Content, Curriculum Development

Howard, Robert E.; And Others – Journal of Chemical Education, 1989
Describes a year long laboratory program for third, fourth, and fifth graders. States the goal of the program is to demonstrate what chemistry is, how it is done, and why it is fun and interesting. Provides a syllabus of the experiments and lists educational objectives. (MVL)
Descriptors: Chemical Reactions, Chemistry, Curriculum Development, Elementary Education

Friedler, Yael; And Others – Journal of Computers in Mathematics and Science Teaching, 1992
Presents results of a study that examines the development and use of computer simulations for high school science instruction and for integrated laboratory and computerized tests that are part of the biology matriculation examination in Israel. Eleven implications for teaching are presented. (MDH)
Descriptors: Biology, College Entrance Examinations, Computer Assisted Instruction, Computer Simulation