NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Brundage, Mary Jane; Singh, Chandralekha – Physical Review Physics Education Research, 2023
We discuss the development and validation of the long version of a conceptual multiple-choice survey instrument called the Survey of Thermodynamic Processes and First and Second Laws-Long suitable for introductory physics courses. This version of the survey instrument is a longer version of the original shorter version developed and validated…
Descriptors: Test Construction, Test Validity, Multiple Choice Tests, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Chandralekha; Levy, Akash; Levy, Jeremy – Physics Teacher, 2022
After the passage of the U.S. National Quantum Initiative Act in December 2018, the National Science Foundation (NSF) and the Office of Science and Technology Policy (OSTP) recently assembled an interagency working group and conducted a workshop titled "Key Concepts for Future Quantum Information Science Learners" that focused on…
Descriptors: Physics, Quantum Mechanics, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Brown, Benjamin; Singh, Chandralekha – Physical Review Physics Education Research, 2021
We discuss the development and validation of a conceptual multiple-choice survey instrument called the survey of thermodynamic processes and first and second laws (STPFaSL) suitable for introductory physics courses. The survey instrument uses common student difficulties with these concepts as resources in that the incorrect answers to the…
Descriptors: Test Construction, Test Validity, Thermodynamics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
DeVore, Seth; Singh, Chandralekha – Physical Review Physics Education Research, 2020
We describe the development and in-class evaluation of a quantum interactive learning tutorial (QuILT) on quantum key distribution, a context which involves an exciting application of quantum mechanics. The protocol used in the QuILT described here uses single photons with nonorthogonal polarization states to generate a random shared key over a…
Descriptors: Science Instruction, Quantum Mechanics, Scientific Concepts, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Maries, Alexandru; Brundage, Mary Jane; Singh, Chandralekha – Physical Review Physics Education Research, 2022
The Conceptual Survey of Electricity and Magnetism (CSEM) is a multiple-choice survey that contains a variety of electricity and magnetism concepts from Coulomb's law to Faraday's law at the level of introductory physics used to help inform instructors of student mastery of those concepts. Prior studies suggest that many concepts on the survey are…
Descriptors: Physics, Energy, Graduate Students, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Yangqiuting; Singh, Chandralekha – Physical Review Physics Education Research, 2022
We discuss an investigation of students' motivational beliefs and performance on the Force Concept Inventory (FCI) in a calculus-based introductory physics course at a large public university in the U.S. We investigated how students' perception of the inclusiveness of the learning environment (including perceived recognition, perceived…
Descriptors: Inclusion, Physics, Science Instruction, Student Motivation
Peer reviewed Peer reviewed
Direct linkDirect link
Marshman, Emily; Singh, Chandralekha – Physical Review Physics Education Research, 2019
We developed and validated a conceptual survey that focuses on the formalism and postulates of quantum mechanics covered in upper-level undergraduate quantum mechanics courses. The concepts included in the quantum mechanics formalism and postulate survey (QMFPS) focus on Dirac notation, the Hilbert space, state vectors, physical observables and…
Descriptors: Quantum Mechanics, Physics, Scientific Principles, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Keebaugh, Christof; Marshman, Emily; Singh, Chandralekha – Physical Review Physics Education Research, 2019
We discuss an investigation of student difficulties with the corrections to the energy spectrum of the hydrogen atom for the intermediate field Zeeman effect using degenerate perturbation theory (DPT). The investigation was carried out in advanced quantum mechanics courses by administering free-response and multiple-choice questions and conducting…
Descriptors: Energy, Scientific Concepts, Quantum Mechanics, Advanced Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha – Physical Review Physics Education Research, 2017
At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics…
Descriptors: Teaching Assistants, Grading, Introductory Courses, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Maries, Alexandru; Sayer, Ryan; Singh, Chandralekha – Physical Review Physics Education Research, 2017
Research suggests that introductory physics students often have difficulty using a concept in contexts different from the ones in which they learned it without explicit guidance to help them make the connection between the different contexts. We have been investigating advanced students' learning of quantum mechanics concepts and have developed…
Descriptors: Quantum Mechanics, Advanced Courses, Tutorial Programs, Instructional Effectiveness
Peer reviewed Peer reviewed
Direct linkDirect link
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha – Physical Review Physics Education Research, 2017
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…
Descriptors: Quantum Mechanics, Interaction, Tutorial Programs, Student Improvement
Peer reviewed Peer reviewed
Direct linkDirect link
Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha – Physical Review Physics Education Research, 2018
The Conceptual Survey of Electricity and Magnetism (CSEM) has been used to assess student understanding of introductory concepts of electricity and magnetism because many of the items on the CSEM have strong distractor choices which correspond to students' alternate conceptions. Instruction is unlikely to be effective if instructors do not know…
Descriptors: Pedagogical Content Knowledge, Teaching Assistants, Scientific Concepts, Student Surveys
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Chandralekha; Marshman, Emily – Physical Review Special Topics - Physics Education Research, 2015
Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical…
Descriptors: Mechanics (Physics), Quantum Mechanics, Science Instruction, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Marshman, Emily; Singh, Chandralekha – Physical Review Physics Education Research, 2017
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…
Descriptors: Quantum Mechanics, Difficulty Level, Problem Solving, Action Research
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Shih-Yin; Singh, Chandralekha – Physical Review Special Topics - Physics Education Research, 2015
It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…
Descriptors: Scaffolding (Teaching Technique), Introductory Courses, Physics, Problem Solving
Previous Page | Next Page ยป
Pages: 1  |  2