NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Larnder, Chris I. – Physics Teacher, 2021
Today's students are increasingly immersed in a landscape of screens and handheld digital devices through which a good deal of their interactions with the world around them are mediated. Physics educators, meanwhile, continue to rely on traditional human interactions with the physical world, such as sliding down a ramp or throwing a baseball, in…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie; Modig, Conny – Physics Education, 2018
An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo – Physics Education, 2017
The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…
Descriptors: Science Instruction, Physics, Science Experiments, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Vollmer, Michael; Möllmann, Klaus-Peter – Physics Education, 2018
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…
Descriptors: Physics, Science Education, Motion, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Davies, Gary B. – Physics Education, 2017
Carrying out classroom experiments that demonstrate Boyle's law and Gay-Lussac's law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow…
Descriptors: Science Instruction, Science Experiments, Physics, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Vieyra, Rebecca; Vieyra, Chrystian; Jeanjacquot, Philippe; Marti, Arturo; Monteiro, Martín – Science Teacher, 2015
Mobile devices have become a popular form of education technology, but little attention has been paid to the use of their sensors for data collection and analysis. This article describes some of the benefits of using mobile devices this way and presents five challenges to help students overcome common misconceptions about force and motion. The…
Descriptors: Handheld Devices, Telecommunications, Science Laboratories, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Cogger, Steve – Science Teacher, 2015
The traditional Run the Football Field physics activity--in which students are timed as they move at different speeds on a football field to investigate displacement and velocity--has been updated for the 21st century. Nowadays, GPS-enabled tablets and smartphones replace the stopwatches and yard markers of the past, allowing students to collect…
Descriptors: Science Instruction, Physics, Computer Oriented Programs, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, June-Yi; Wu, Hsin-Kai; Chien, Sung-Pei; Hwang, Fu-Kwun; Hsu, Ying-Shao – Journal of Educational Computing Research, 2015
So far relatively little research in education has explored the pedagogical and learning potentials of applications (Apps) on tablet PCs (TPCs). Drawing upon research on learning technologies and taking an embodied perspective, this study first identified educational functionalities of TPCs and generated guidelines to design educational Apps for…
Descriptors: Physics, Science Instruction, Secondary School Science, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Hechter, Richard P. – Physics Teacher, 2013
With the increased availability of modern technology and handheld probeware for classrooms, the iPad and the Video Physics application developed by Vernier are used to capture and analyze the motion of an ice hockey puck within secondary-level physics education. Students collect, analyze, and generate digital modes of representation of physics…
Descriptors: Physics, Science Instruction, Handheld Devices, Computer Oriented Programs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sampson, Demetrios G., Ed.; Ifenthaler, Dirk, Ed.; Isaías, Pedro, Ed. – International Association for Development of the Information Society, 2018
The aim of the 2018 International Association for Development of the Information Society (IADIS) Cognition and Exploratory Learning in the Digital Age (CELDA) conference was to address the main issues concerned with evolving learning processes and supporting pedagogies and applications in the digital age. There have been advances in both cognitive…
Descriptors: Learning Processes, Teaching Methods, Educational Technology, Technology Uses in Education