NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 118 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
De Micheli, Andrea J.; Valentin, Thomas; Grillo, Fabio; Kapur, Manu; Schuerle, Simone – Journal of Chemical Education, 2022
Natural sciences can be difficult to grasp because physical and chemical phenomena can take place across time and length scales that are beyond the reach of human perception. This problem is particularly true for students attempting to learn about microfluidics, a discipline that involves intricate engineering methods and fluid phenomena that are…
Descriptors: Computer Simulation, Chemistry, Laboratory Training, College Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eshetu Desalegn Alemneh; Dereje Andargie Kidanmariam; Solomon Melesse Mengistie; Belete Bedemo Beyene – Journal of Technology and Science Education, 2024
The study aimed to investigate the effect of computer simulation and animation-integrated instruction on preservice science teacher trainees' conceptual understanding and retention of acid-base chemistry and stoichiometry. A quantitative approach with a pretest-posttest-delayed test quasi-experimental design was used. In the study area, there were…
Descriptors: Computer Simulation, Animation, Preservice Teachers, Preservice Teacher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Samuel Jere; Mamotena Mpeta – Research in Science Education, 2024
One of the critical goals of teaching chemistry is to enable learners to gain conceptual understanding. Traditional instruction has often been associated with rote memorisation, resulting in learners failing to explain observed chemical phenomena, make predictions based on acquired concepts, advance convincing arguments, and engage in meaningful…
Descriptors: Computer Simulation, Concept Formation, Energy, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Joaqui´n Gonza´lez; Eduardo Laborda; A´ngela Molina – Journal of Chemical Education, 2023
Theoretical and practical foundations of basic electrochemical concepts of heterogeneous charge transfer reactions that underline electrochemical processes are presented for their detailed study by undergraduate and postgraduate students. Several simple methods for calculating key variables, such as the half-wave potential, limiting current, and…
Descriptors: Chemistry, College Science, Science Instruction, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Leonora Kaldaras; Hope O. Akaeze; Joseph Krajcik – Journal of Research in Science Teaching, 2024
Chemical bonding is central to explaining many phenomena. Research in chemical education and the Framework for K-12 Science Education (the "Framework") argue for new approaches to learning chemical bonding grounded in (1) using ideas of the balance of electric forces and energy minimization to explain bond formation, (2) using learning…
Descriptors: Science Education, Academic Standards, Chemistry, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Salvatore G. Garofalo – Journal of Science Education and Technology, 2025
The initial learning experience is a critical opportunity to support conceptual understanding of abstract STEM concepts. Although hands-on activities and physical three-dimensional models are beneficial, they are seldom utilized and are replaced increasingly by digital simulations and laboratory exercises presented on touchscreen tablet computers.…
Descriptors: High School Freshmen, Science Instruction, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Philip, Anita John; Du Toit, Gawie; Van Breda, Cobus – European Journal of STEM Education, 2023
This study, titled "The Effect of Computer Simulation on Grade 11 Learners' Conceptualisation of Stoichiometric Chemistry," was carried out at a school in the Frances Baard District of the Northern Cape province of South Africa. Poor conceptualisation of stoichiometric chemistry by learners in Grades 10-12 in South Africa and, hence,…
Descriptors: Computer Simulation, Instructional Effectiveness, Grade 11, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Yue Zhang; Misa Sayama; Michelle Luo; Yining Lu; Dean J. Tantillo – Journal of Chemical Education, 2022
The Databank of Dynamics Trajectories (DDT, notthatddt.org) was established to assist students in visualizing the dynamical behaviors occurring during chemical reactions and conformational changes, with a focus on processes taught in introductory organic chemistry classes. Animations of reacting molecules created using "ab initio"…
Descriptors: Science Instruction, Organic Chemistry, Introductory Courses, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Young-Eun Jeon; Joon-Yong Ji; Hun-Gi Hong – Journal of Chemical Education, 2024
Herein, we developed a mobile augmented reality (AR) application that can recognize chemical bonding by arranging markers on which atoms are augmented, in accordance with the specific characteristics of actual chemical bonding. From an educational affordance perspective, the development targets for AR application were selected to recognize…
Descriptors: Computer Simulation, Handheld Devices, Telecommunications, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Matovu, Henry; Won, Mihye; Treagust, David Franklin; Ungu, Dewi Ayu Kencana; Mocerino, Mauro; Tsai, Chin-Chung; Tasker, Roy – Chemistry Education Research and Practice, 2023
In recent years, chemistry educators are increasingly adopting immersive virtual reality (IVR) technology to help learners visualise molecular interactions. However, educational studies on IVR mostly investigated its usability and user perceptions leaving out its impact on improving conceptual understanding. If they evaluated students' knowledge…
Descriptors: Science Education, Chemistry, Computer Simulation, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ilia Kuzminov; Alexey Vokhmin; Kristina Sharaeva; Maxim Likhanov; Angelika Markovnikova; Andrey Vladimirovich Lyamin; Mikhail Vyacheslavovich Kurushkin – Journal of Chemical Education, 2024
Application of modern technologies, including virtual reality (VR) and eye-tracking (ET), to educational practice has been vigorously researched over the past decade with a focus on enhancing and improving school and university educational process and students' results. The main aim of this technological report is to describe an implementation of…
Descriptors: Eye Movements, Chemistry, Science Instruction, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Shimelis Kebede Kekeba; Abera Gure; Taklu Tafesse Olkaba – Open Education Studies, 2024
The objective of the study was to investigate the effect of computer simulation integrated with jigsaw learning strategy (CSIJLS) on students' attitudes towards chemistry. Additionally, it sought to determine whether the usage of CSIJLS resulted in any changes in attitudes between male and female students. Researchers employed a quantitative…
Descriptors: High School Students, Grade 10, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Shimelis Kebede Kekeba; Abera Gure; Teklu Tafesse Olkaba – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study was to investigate the impact of using a jigsaw learning strategy integrated with computer simulation (JLSICS) on the academic achievement and attitudes of students, along with exploring the relationships between them in the process of learning about acids and bases. Design/methodology/approach: The research…
Descriptors: Teaching Methods, Learning Strategies, Computer Simulation, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Hua, Amy K.; Lakey, Pascale S. J.; Shiraiwa, Manabu – Journal of Chemical Education, 2022
This paper presents MATLAB user interfaces for two multiphase kinetic models: the kinetic double-layer model of aerosol surface chemistry and gas--particle interactions (K2-SURF) and the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). Each interface has simple and user-friendly features that allow undergraduate and…
Descriptors: Chemistry, Science Instruction, Computer Interfaces, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas D. Varberg – Journal of Chemical Education, 2022
An experiment for the undergraduate physical chemistry laboratory is described in which the Raman spectrum of liquid "para"-difluorobenzene is recorded and assigned. A density functional theory (DFT) calculation of the 30 normal modes of the molecule is undertaken using computational chemistry software. Students use group theory to…
Descriptors: Undergraduate Students, Science Instruction, College Science, Science Laboratories
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8