NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Moloi, Mabel Julia; Motlhabane, Abraham Tlhalefang – South African Journal of Education, 2023
The aim with this study was to analyse and explore how physical sciences, engineering science and technology subjects (technical electrical technology, technical civil technology, technical mechanical technology) can contribute to the alignment of the technical sciences curriculum. We used document analysis to collect data. An analysis of the…
Descriptors: Integrated Curriculum, Science Curriculum, Physical Sciences, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cornelis J. C. Vertegaal; Cecilia Martinez; Ramiro Serra; Prem Sundaramoorthy; Mark J. Bentum – IEEE Transactions on Education, 2025
Contribution: This study identifies the types of interaction that contribute to student learning with student-led tutorials (SLTs). The quality of these interactions include peer discussion, student tutor presentation, joint reasoning, and constructive feedback. Background: The introduction of SLTs in an advanced electromagnetics bachelor course…
Descriptors: Undergraduate Students, Physics, Science Curriculum, Science Instruction
McBride, Elizabeth Anne – ProQuest LLC, 2018
It is often claimed that engineering projects improve student achievement in mathematics and science, but research on this topic has shown that many projects do not live up to the claim (Teacher Advisory Council, 2009). Ideally, undertaking a science project should be motivating, while also helping students to understand the interplay between…
Descriptors: Science Instruction, Hands on Science, Scientific Concepts, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sisk-Hilton, Stephanie; Ferner, Sarah Davies – Science and Children, 2022
The inclusion of engineering in the Next Generation Science Standards (NGSS) as a key component of K-12 science learning has provided both opportunities and challenges for elementary teachers. One challenge is integrating the design thinking processes that undergird engineering with core science concepts and current issues facing scientists and…
Descriptors: Engineering Education, Science Education, National Standards, Elementary School Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, Elizabeth A., Ed.; Stephens, Amy, Ed. – National Academies Press, 2022
Starting in early childhood, children are capable of learning sophisticated science and engineering concepts and engage in disciplinary practices. They are deeply curious about the world around them and eager to investigate the many questions they have about their environment. Educators can develop learning environments that support the…
Descriptors: Science Education, Engineering Education, Scientific Concepts, Preschool Education
Peer reviewed Peer reviewed
Direct linkDirect link
Krajcik, Joe – Science and Children, 2015
Science teaching and learning in the United States are at a pivotal point. "A Framework for K-12 Science Education" (NRC 2012b) and the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013) shift science educators' focus from simply teaching science ideas to helping students figure out phenomena and…
Descriptors: Science Instruction, Science Education, Science Curriculum, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Graham, Nicholas James; Brouillette, Liane – Journal for Learning through the Arts, 2016
The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…
Descriptors: Art Education, STEM Education, Scientific Methodology, Elementary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W. – Natural Sciences Education, 2013
A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…
Descriptors: Teaching Methods, Feedback (Response), Student Interests, Learning Modules
National Academies Press, 2012
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S.…
Descriptors: Science Education, Science Instruction, Elementary Secondary Education, Alignment (Education)
Custer, Rodney L.; Daugherty, Jenny L.; Meyer, Joseph P. – National Center for Engineering and Technology Education, 2009
The purpose of the study was to identify and refine a conceptual foundation for secondary school engineering education. Specifically, this study sought to address the following research questions: (1) What engineering concepts are present in literature related to the nature and philosophy of engineering?; (2) What engineering concepts are embedded…
Descriptors: Science History, Science Curriculum, Scientific Concepts, Scientific Principles
Kelley, Todd; Brenner, Daniel C.; Pieper, Jon T. – National Center for Engineering and Technology Education, 2010
A comparative study was conducted to compare two approaches to engineering design curriculum between different schools (inter-school) and between two curricular approaches, "Project Lead the Way" (PLTW) and "Engineering Projects in Community Service" (EPIC High) (inter-curricular). The researchers collected curriculum…
Descriptors: Curriculum Guides, Protocol Analysis, Surveys, Engineering
Lawanto, Oenardi; Stewardson, Gary – National Center for Engineering and Technology Education, 2009
The objective of this study was to evaluate grade 9-12 students' motivation while engaged in two different engineering design projects: marble-sorter and bridge designs. The motivation components measured in this study were focused on students' intrinsic (IGO) and extrinsic (EGO) goal orientations, task value (TV), self-efficacy for learning and…
Descriptors: Student Surveys, Questionnaires, Correlation, Student Motivation
Peer reviewed Peer reviewed
Bartlett, Albert A. – American Journal of Physics, 1981
Suggesting that physics need not be entirely mathematically oriented, offers examples and personal anecdotes illustrating how the applications of physics in other disciplines can be used to supplement traditional lectures and the physics of everyday phenomena. (JN)
Descriptors: College Science, Curriculum Enrichment, Engineering Education, Higher Education
Peer reviewed Peer reviewed
Deshpande, Pradeep B.; And Others – Chemical Engineering Education, 1980
Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)
Descriptors: Chemistry, College Science, Curriculum Development, Engineering Education
Hamilton, Howard B. – 1970
This publication was developed as a portion of a two-semester sequence commencing at either the sixth or seventh term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of the two courses, produced by a National Science Foundation grant, are concerned with power conversion systems comprising power…
Descriptors: College Science, Curriculum Development, Electricity, Electromechanical Technology
Previous Page | Next Page ยป
Pages: 1  |  2