NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers12
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 56 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, Andreas; Splith, Tobias; Stallmach, Frank – Physics Teacher, 2021
Implementing smartphones with their internal sensors into physics experiments represents a modern, attractive, and authentic approach to improve students' conceptual understanding of physics. In such experiments, smartphones often serve as objects with physical properties and as digital measurement devices to record, display, and analyze…
Descriptors: Telecommunications, Handheld Devices, Technology Uses in Education, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Herrera-Suárez, H. J.; Morales-Aranguren, H. L.; Muñoz, J. H.; Ossa-Novoa, J. – Physics Education, 2022
The oscillations of one mass "m" suspended between two different springs, assuming a friction force proportional to the velocity [minuscule], have been studied. For this purpose, an assembly for this system has been made. The movement of the mass is recorded with a smartphone and analysed with "Tracker." It is obtained that the…
Descriptors: Mechanics (Physics), Motion, Energy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Salinas, Isabel; Monteiro, Martín; Martí, Arturo C.; Monsoriu, Juan A. – Physics Teacher, 2020
In this article, the dynamics of a traditional toy, the yo-yo, are investigated theoretically and experimentally using smartphone sensors. In particular, using the gyroscope the angular velocity is measured. The experimental results are complemented thanks to a digital video analysis. The concordance between theoretical and experimental results is…
Descriptors: Toys, Handheld Devices, Telecommunications, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Mananghaya, Michael Rivera; Yu, Dennis – Physics Education, 2022
A low-cost simple one-dimensional spring-mass system was constructed to investigate damped oscillations. The suspended mass in the system can move freely inside a cylinder containing a fluid. It provides an in-depth experience for demonstrating various concepts under oscillations. It can be used to probe the magnitude of damping forces in liquids…
Descriptors: Science Instruction, Physics, Scientific Concepts, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Kapucu, Serkan – Physics Teacher, 2019
In recent years, smartphone sensors have been frequently used in educational demonstrations to improve students' understanding of certain physical kinematic topics. In particular, the sensors on modern smartphones enable students to use their phones as physics mini-laboratories, and they have been used to analyze objects' speeds and accelerations…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Wörner, Salome; Fischer, Christian; Kuhn, Jochen; Scheiter, Katharina; Neumann, Irene – Physics Teacher, 2021
Video motion analysis allows tracing trajectories of objects in motion and is an established method in physics education. Tablet computers, with their integrated cameras, offer the opportunity to both record and analyze dynamic motions during experiments on a single device. This enables students to work without transitioning the data between…
Descriptors: Video Technology, Motion, Astronomy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
de Oliveira, A. L.; de Jesus, V. L. B.; Sasaki, D. G. G. – Physics Education, 2021
The drag effect on a falling ball caused by air is a conventional subject in the most well-known textbooks of classical mechanics and fluid dynamics. Further, there are some papers that employ video analysis to track objects movements in the air making it possible to obtain position data as a function of time and its graphs. However, none of them…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Pendrill, Ann-Marie – Physics Education, 2020
Your body is not a point particle. The nature and direction of the forces counteracting gravity influence your experience of uniform rectilinear motion--as does your own orientation in relation to the force of gravity. Sensors in smartphones or other devices can capture these forces, and help establish a connection between the personal experience…
Descriptors: Physics, Science Instruction, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Hochberg, Katrin; Becker, Sebastian; Louis, Malte; Klein, Pascal; Kuhn, Jochen – Journal of Science Education and Technology, 2020
Mobile devices (smartphones or tablets) as experimental tools (METs) offer inspiring possibilities for science education, but until now, there has been little research studying this approach. Previous research indicated that METs have positive effects on students' interest and curiosity. The present investigation focuses on potential cognitive…
Descriptors: Telecommunications, Handheld Devices, Teaching Methods, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Anggi Datiatur Rahmat; Insih Wilujeng; Heru Kuswanto – Journal of Science Learning, 2023
Integrating traditional games into science learning can reconstruct local knowledge into scientific knowledge. One of the most popular technologies today is the mobile phone, which almost everyone uses. This study investigates the effect of mobile learning integrated with traditional games Egrang on students' multiple representation skills. This…
Descriptors: Science Education, Educational Technology, Technology Uses in Education, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmed, A. Ait Ben; Touache, A.; ElHakimi, A.; Chamat, A. – Physics Education, 2022
The dynamic study of pendulum systems is considered an indispensable subject for physics and mechanics students in colleges and high schools. In this paper, a detailed methodology is given concerning the use of smartphones in pedagogical practical work for studying the dynamics of pendulum systems. Whereas, three aspects have been discussed…
Descriptors: Science Instruction, Mechanics (Physics), College Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, M. N. S.; Carvalho-Neto, J. T. – Physics Education, 2020
Oscillations and resonance are essential topics in physics that can be explored theoretically and experimentally in the classroom or teaching laboratory environments. However, one of the main challenges concerning the experimental study of resonance phenomena via forced oscillations is the control of the oscillation frequency, which demands an…
Descriptors: Mechanics (Physics), Scientific Concepts, Science Instruction, Toys
Peer reviewed Peer reviewed
Direct linkDirect link
Kapucu, Serkan – Physics Education, 2021
This study aims to measure the angular velocity of a clock's second hand and the average angular velocity of a metronome using a smartphone. To determine the angular velocities, the ticking of clock's second hand and the metronome beats were recorded. The angle between the extreme left and right positions of the metronome's hand was also measured.…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Larnder, Chris I. – Physics Teacher, 2021
Today's students are increasingly immersed in a landscape of screens and handheld digital devices through which a good deal of their interactions with the world around them are mediated. Physics educators, meanwhile, continue to rely on traditional human interactions with the physical world, such as sliding down a ramp or throwing a baseball, in…
Descriptors: Physics, Science Instruction, Teaching Methods, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Laotreephet, Pimpakarn; Khemmani, Supitch; Puttharugsa, Chokchai – Physics Education, 2020
This paper demonstrated a simple experiment for determining the coefficient of rolling friction of a hollow cylinder rolling on a curved track using a smartphone's sensors. We studied theoretically and experimentally the rolling motion of a hollow cylinder uncovered and covered with various materials (synthetic leather and sponge sheets). The…
Descriptors: Science Instruction, Physics, Motion, Scientific Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4