NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 223 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nikolaos Papalazarou; Ioannis Lefkos; Nikolaos Fachantidis – Journal of Science Education and Technology, 2024
Involving students in laboratory and inquiry-based activities can help them understand the concepts of physics. However the learning process should not only focus on the concepts. Moreover, the advantages of using virtual or physical labs are still under examination. The purpose of this study is to analyse which of the two modes (virtual or…
Descriptors: Student Attitudes, Physics, Laboratory Experiments, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Palacios Gómez, Jesús; Villagómez, Roque André Eleazar Arroyo – Physics Teacher, 2023
Here, a relatively simple laboratory experiment of a physical pendulum, suitable for students of science and engineering in the first courses of university physics, is presented to illustrate its dynamic behavior and to determine its inertia moment. To this end, a long wooden rod of length L = 99.8 cm and cross-section radius R = 1.73 cm was used…
Descriptors: Physics, Science Instruction, Science Laboratories, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Borish; H.?J. Lewandowski – Physical Review Physics Education Research, 2024
Instruction in quantum mechanics is becoming increasingly important as the field is not only a key part of modern physics research but is also important for emerging technologies. However, many students regard quantum mechanics as a particularly challenging subject, in part because it is considered very mathematical and abstract. One potential way…
Descriptors: Science Instruction, Science Experiments, Quantum Mechanics, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2022
A 2.7 m long stringless pendulum was set up to measure the coefficient of rolling friction of various balls, at higher rolling speeds than usually observed with a short stringless pendulum. The arrangement is easy to set up and makes an impressive classroom demonstration as well as an interesting laboratory experiment.
Descriptors: Physics, Science Instruction, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Minchul Kim; Sangwoo Ha – Science & Education, 2024
Although Ohm's law contains various possibilities in teaching and learning scientific inquiry, it is rare for students to experience an authentic inquiry. Thus, we designed an open-ended in-depth inquiry about Ohm's law and made students conduct it. To do this, we developed a laboratory activity for students following a standard method of Ohm's…
Descriptors: Physics, Scientific Concepts, Concept Formation, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Billingsley, Brianna R.; Christenson, Cory W. – Physics Teacher, 2022
A popular introductory physics laboratory experiment is one focusing on Snell's law. This is straightforward to complete with lasers and prisms, but here we present an alternative version that guides the students through some of the major historical developments, recreating and analyzing significant experiments. The discovery of Snell's law has a…
Descriptors: Physics, Science Laboratories, Laboratory Experiments, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Geske, Matthew; Murray-Weston, Crystal; Lelack, Graham – Physics Teacher, 2022
The Wilson cloud chamber, invented in 1911 by Scottish physicist Charles Wilson, is a remarkably simple and effective charged particle detector. Cloud chambers were used regularly in particle physics experiments for decades, until being supplanted by bubble chambers. In this article, we describe a lab activity that is suitable for…
Descriptors: Science Instruction, Physics, Science Experiments, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Mingheng – Chemical Engineering Education, 2022
The analogy among momentum, heat and mass transport phenomena is an important concept in chemical engineering education. This paper presents the analogy between heat exchanger and packed column calculations. The effectiveness-NTU method used to calculate outlet temperatures of hot and cold streams in an exchanger is introduced in a packed column…
Descriptors: Heat, Engineering Education, Chemical Engineering, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Ravishankar Chatta Subramaniam; Nikhil Borse; Amir Bralin; Jason W. Morphew; Carina M. Rebello; N. Sanjay Rebello – Physical Review Physics Education Research, 2025
Reform documents advocate for innovative pedagogical strategies to enhance student learning. A key innovation is the integration of science and engineering practices through engineering design (ED)-based physics laboratory tasks, where students tackle engineering design problems by applying physics principles. While this approach has its benefits,…
Descriptors: Physics, Laboratory Experiments, Teaching Methods, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ian Descamps; Sophia Jeon; N. G. Holmes; Rachel E. Scherr; David Hammer – Physical Review Physics Education Research, 2024
In introductory physics laboratory instruction, students often expect to confirm or demonstrate textbook physics concepts. This expectation is largely undesirable: labs that emphasize confirmation of textbook physics concepts are generally unsuccessful at teaching those concepts and even in contexts that do not emphasize confirmation, such…
Descriptors: Physics, Science Instruction, Teaching Methods, Personal Autonomy
Peer reviewed Peer reviewed
Direct linkDirect link
Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B. – Physics Education, 2018
The study of buoyancy becomes very interesting when we measure the apparent weight of the body and the liquid vessel weight. In this paper, we propose an experimental apparatus that measures both the forces mentioned before as a function of the depth that a cylinder is sunk into the water. It is done using two load cells connected to an Arduino.…
Descriptors: Kinetics, Science Experiments, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Borish, Victoria; Lewandowski, H. J. – Physical Review Physics Education Research, 2023
As quantum information science and technology (QIST) is becoming more prevalent and occurring not only in research labs but also in industry, many educators are considering how best to incorporate learning about quantum mechanics into various levels of education. Although much of the focus has been on quantum concepts in nonlab courses, current…
Descriptors: Science Instruction, Undergraduate Study, Science Laboratories, Quantum Mechanics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Trudel, Louis; Métioui, Abdeljalil – International Baltic Symposium on Science and Technology Education, 2019
The domain of motion or kinematics is important because it forms the basis of mechanics, an important branch of physics. By studying kinematic phenomena in the laboratory, high school students are likely to develop a better understanding of kinematics concepts as well as elements of the scientific approach to study natural and constructed…
Descriptors: Motion, Mechanics (Physics), Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
La Braca, Franco; Kalman, Calvin S. – Physical Review Physics Education Research, 2021
Traditional, template physics labs are often associated with student dissatisfaction and superficial applications, and are known to leave students with fragmented knowledge. An alternative known as labatorials, a conceptually driven approach to labs, has been proposed. In a number of studies, labatorials have been shown to work well. However, what…
Descriptors: Science Instruction, Teaching Methods, Scaffolding (Teaching Technique), Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Phayphung, Wissarut; Rakkapao, Suttida; Prasitpong, Singha – Physics Education, 2022
The article introduces a low-cost Arduino sensor into the Young's modulus determination laboratory for physics university students. A stainless steel ruler is used as a cantilever beam. Its free end attached a mass is slightly bent and released to make it oscillate as a simple harmonic motion. The Arduino sensor detects the moving mass's frequency…
Descriptors: Laboratory Equipment, Science Laboratories, Physics, College Science
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  15