Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 64 |
Descriptor
Magnets | 68 |
Science Experiments | 68 |
Scientific Principles | 68 |
Science Instruction | 51 |
Physics | 47 |
Energy | 30 |
College Science | 22 |
Scientific Concepts | 22 |
Teaching Methods | 16 |
Laboratory Equipment | 14 |
Motion | 14 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 66 |
Reports - Descriptive | 52 |
Reports - Research | 11 |
Reports - Evaluative | 3 |
Guides - Classroom - Learner | 2 |
Guides - Classroom - Teacher | 2 |
Historical Materials | 2 |
Books | 1 |
Education Level
Higher Education | 21 |
Secondary Education | 7 |
High Schools | 6 |
Postsecondary Education | 3 |
Elementary Education | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 9 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Teachers | 9 |
Students | 2 |
Practitioners | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fontes, Daniel T. M.; Rodrigues, André Machado – Physics Teacher, 2021
Electromagnetism is a complex topic for students at different educational levels. Perhaps one of the reasons for this is that students are unable to visualize the forces, fields, currents, and other electromagnetism key concepts that are related to the topic. Most teachers address this difficulty by including the use of some technological…
Descriptors: Scientific Principles, Magnets, Science Experiments, Scientific Concepts
Rojas, Roberto – Physics Teacher, 2022
In one of the Faraday's experiments an electric current is induced in a conducting loop when a magnet in front of it moves towards or away from the loop. While the direction of circulation of the electric current in the loop has only two options, it depends on three experimental conditions that generate eight cases. Even though the Faraday law or…
Descriptors: Energy, Magnets, Science Experiments, Scientific Principles
Härtel, Hermann – European Journal of Physics Education, 2020
Based on a publication of Assis, where the most straightforward and oldest motor is described, first constructed by Ampère, a simple experiment is added to demonstrate once again, why published explanations about its principle of operation and especial the kind how Newton's 3rd principle is used has to be rejected. Ampère's description of his…
Descriptors: Science Experiments, Scientific Principles, Physics, Magnets
Médjahdi, Kader – Physics Teacher, 2019
Measuring magnetic induction is occasionally performed by our students during their academic training in physics. Among the various methods used to measure it, the Hall effect is the most common and widespread. Another way consists of employing an electronic flux-meter. It is constituted by a small flat coil (SFC) connected to the input of an…
Descriptors: Magnets, Physics, Science Instruction, Teaching Methods
Berls, Rob; Ruiz, Michael J. – Physics Education, 2018
The classic demonstration illustrating Lenz's law by dropping a magnet through a copper pipe is presented using household aluminum foil right out of the box. Then comes the surprise. The teacher presents an aluminum foil cylinder with a missing lengthwise slice (cut before class). Will the demonstration still work? Students are amazed at the…
Descriptors: Physics, Scientific Concepts, Scientific Principles, Science Experiments
Reeder, S.; Wilkie, K.; Kelly, T. J.; Boullard, J. S. – Physics Education, 2019
In this article, we outline a demonstration that is relatively simple to perform but whose results require a quite subtle interpretation of Faraday's Law. When a very small magnet is dropped through a coil it can tumble as it falls leading to 'spikes' in the measured emf signal. The experiment, and demonstration, can be used in an introductory…
Descriptors: Physics, Magnets, Science Experiments, Scientific Concepts
Laumann, Daniel – Physics Teacher, 2017
Magnetism and its various applications are essential for our daily life and for many technological developments. The term "magnetism" is almost always used as a synonym for ferromagnetism. However, the magnetic properties of the elements of the periodic table indicate that the vast majority of elements are not ferromagnetic, but rather,…
Descriptors: Scientific Principles, Magnets, Teaching Methods, Science Experiments
Pollock, David W.; Truong, Giovanna T.; Bonjour, Jessica L.; Frost, John A. – Journal of Chemical Education, 2018
Solubility is frequently introduced at the high school and introductory college levels through the symbolic domain using net ionic equations and solubility product constants. Students may become proficient with spectator ion cancellation and skilled with algorithmic mathematical applications of solubility without obtaining a deeper understanding…
Descriptors: Spectroscopy, Chemistry, Data Collection, Science Experiments
Wood, Deborah; Sebranek, John – Physics Teacher, 2013
In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831…
Descriptors: Magnets, Electronics, Science Experiments, Science Instruction
Najiya Maryam, K. M. – Physics Education, 2014
If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…
Descriptors: Science Instruction, Science Experiments, Magnets, Motion
Michaelis, Max M. – Physics Education, 2014
After a brief history of the Levitron, the first horizontal axis Levitron is reported. Because it is easy to operate, it lends itself to educational physics experiments and analogies. Precession and nutation are visualized by reflecting the beam from a laser pointer off the "spignet". Precession is fundamental to nuclear magnetic…
Descriptors: Science Instruction, Lasers, Magnets, Scientific Principles
Haugland, Ole Anton – Physics Teacher, 2014
The bicycle generator is often mentioned as an example of a method to produce electric energy. It is cheap and easily accessible, so it is a natural example to use in teaching. There are different types, but I prefer the old side-wall dynamo. The most common explanation of its working principle seems to be something like the illustration in Fig.…
Descriptors: Science Education, Teaching Methods, Power Technology, Energy Education
Doran, Patrick; Hawk, William; Siegel, P. B. – Physics Teacher, 2014
Maxwell's discovery of the relation between electricity, magnetism, and light was one of the most important ones in physics. With his added displacement current term, Maxwell showed that the equations of electricity and magnetism produced a radiation solution, electromagnetic (EM) radiation, that traveled with a speed of c=1/v(e0µ0). The…
Descriptors: Science Instruction, Physics, Energy, Magnets
Nunn, John – Physics Education, 2014
A simple inductive gravimeter constructed from a rigid plastic pipe and insulated copper wire is described. When a magnet is dropped through the vertically mounted pipe it induces small alternating voltages. These small signals are fed to the microphone input of a typical computer and sampled at a typical rate of 44.1 kHz using a custom computer…
Descriptors: Science Instruction, Physics, Laboratory Equipment, Magnets
Zhong, Juhua; Cheng, Zhongqi; Ge, Ziming; Zhang, Yuelan; Lu, Wenqiang; Song, Feng; Li, Chuanyong – Physics Education, 2012
To demonstrate the different vibration characteristics of a magnetic spring compared with those of a metal one, a magnetic spring apparatus was constructed from a pair of circular magnets of the same size with an inside diameter of 2.07 cm and an outside diameter of 4.50 cm. To keep the upper magnet in a suspension state, the two magnets were…
Descriptors: Science Instruction, Physics, Scientific Principles, Magnets