NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory1
What Works Clearinghouse Rating
Meets WWC Standards with or without Reservations1
Showing 1 to 15 of 386 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Benedetto, Elmo; Iovane, Gerardo – International Journal of Mathematical Education in Science and Technology, 2022
This paper has a pedagogical aim. Indeed, by using the relativistic velocity-addition and Einstein's equivalence principle (EEP), we want to analyse in a simple way the physics of time on a rotating non-inertial frame. We use a didactic approach considering four friends. The first is in the laboratory, the second at rest on the disk at radius r,…
Descriptors: Physics, Time, Motion, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Lozovenko, O.; Minaiev, Yu; Lutai, R. – Physics Education, 2022
The purpose of this publication is to present a novel approach to the demonstration of the Dzhanibekov effect. The main idea of our version is to use a lightweight spinning top of a spherical external form but distinct principal moments of inertia floating in the upward flow of air. As a result, the Dzhanibekov effect can be easily demonstrated…
Descriptors: Science Instruction, Teaching Methods, Physics, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2021
If a smooth ball is dropped vertically without spin on a smooth horizontal surface then one might expect the ball to bounce vertically without spin. If it does not then the centre of mass of the ball does not coincide with its geometric centre. An experiment is described where a billiard ball and a superball are deliberately biassed by adding a…
Descriptors: Science Instruction, Scientific Principles, Physics, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Herman, Thaddeus – Physics Teacher, 2022
Even though many physics teachers take their students on a calculation adventure through circular motion and Newton's universal law of gravity to determine Earth's velocity, most of us leave it at that. We present the final result and say, "Look, Earth is moving around the Sun at about 107,000 km/hr (66,000 mph), yet we can't feel the motion…
Descriptors: Astronomy, Space Sciences, Scientific Concepts, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Marchewka, Avi – Physics Education, 2021
In order to describe the velocity of two bodies after they collide, Newton developed a phenomenological equation known as 'Newton's experimental law' (NEL). In this way, he was able to practically bypass the complication involving the details of the force that occurs during the collision of the two bodies. Today, we use NEL together with momentum…
Descriptors: Physics, Scientific Principles, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2020
If a ball rolls at constant speed on a horizontal surface about a horizontal axis then the angular velocity is easily measured. If the ball is projected with additional spin about the vertical axis, then the rotation axis is tilted and it is more difficult to measure the rotation speed. A few examples are presented to show how the separate topspin…
Descriptors: Motion, Physics, Scientific Principles, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ivanov, Dragia; Nikolov, Stefan – Physics Education, 2020
In this paper we consider the well-known experiment with the 'heavy' newspaper that breaks a stick that it is laid on. Using several appropriate control experiments we show that the currently invoked explanation using atmospheric pressure cannot be correct. We perform a theoretical analysis and propose a new explanation based on the rotational…
Descriptors: Science Instruction, Science Experiments, Physics, Motion
Daniel A. Martens Yaverbaum – ProQuest LLC, 2024
This study investigated evidence of how students' mental models of fundamental kinematic relations evolved (i.e., developed cognitively over time) as observed during an introductory course in calculus-based classical mechanics. The core of the curriculum is based on a claim known as Galileo's principle of relativity. The course material comprised…
Descriptors: Schemata (Cognition), Motion, Physics, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Kin Son; Wong, Hang – Physics Teacher, 2022
The law of conservation of momentum is a fundamental law of nature. It states that the momentum of an isolated system is conserved. In high school or introductory-level physics courses, for simplicity, teachers and textbooks always use collisions in one dimension as the examples to introduce the concept of conservation of momentum. To solve simple…
Descriptors: Scientific Principles, Kinetics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Coqueiro Rodrigues, Rojans; Cardozo Dias, Penha Maria – Physics Teacher, 2022
In high school, and also in introductory physics courses in higher levels of schooling, the law of universal gravitation of planets is introduced by postulating Johannes Kepler's three laws, and later Isaac Newton's law of the inverse of the square of the distance to the Sun. The justification of the laws is only achieved in advanced courses in…
Descriptors: Scientific Principles, Astronomy, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Noly Shofiyah; Nadi Suprapto; Binar Kurnia Prahani; Budi Jatmiko; Desak Made Anggraeni; Khoirun Nisa' – Cogent Education, 2024
This research investigates the abilities of undergraduate students to apply scientific reasoning in Indonesia, with a particular focus on the concept of force and motion. Forty-three first-year undergraduate students from an Indonesian private institution, comprising 20 males and 23 females, performed the Scientific Reasoning Test of Motion (SRTM)…
Descriptors: Motion, Physics, Scientific Concepts, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Kekule, Tomáš – Physics Teacher, 2022
Newton's laws are essential for understanding causes and description of mechanical motion. Great attention is paid to them during physics education. Unfortunately, many students, not only in high school, but also undergraduates, can recite them but do not understand their essence. Therefore, it is useful to demonstrate different experiments in the…
Descriptors: Physics, Science Instruction, Scientific Principles, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Amy D.; Goodhew, Lisa M.; Scherr, Rachel E.; Heron, Paula R. L. – Physical Review Physics Education Research, 2021
Existing research identifying common student ideas about forces focuses on students' misunderstandings, misconceptions, and difficulties. In this paper, we characterize student thinking in terms of resources, framing student thinking as continuous with formal physics. Based on our analysis of 2048 written responses to conceptual questions, we…
Descriptors: College Students, Knowledge Level, Physics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Canassa, T. A.; Freitas, W. P. S.; Ferreira, J. V. B.; Goncalves, A. M. B. – Physics Education, 2020
We propose an experimental analogy to verify Kepler's second law using a spherical pendulum. We made a movie of a closed elliptical orbit of the pendulum and extracted the data position using the Tracker software. Analyzing the data, we measured the areas that the position vector sweeps showing the validity of Kepler's second law.
Descriptors: Scientific Principles, Motion, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Cross, Rod – Physics Education, 2019
When a ball bounces obliquely on a horizontal surface, the bottom of the ball stretches horizontally and then vibrates backward. The resulting ball spin depends sensitively on the transverse vibration frequency. A simple model is presented to describe the effect, showing how the stored elastic energy can result in additional spin.
Descriptors: Science Instruction, Motion, Physics, Energy
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  26