Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Author
Akihito Kamata | 2 |
Cornelis Potgieter | 2 |
Xin Qiao | 2 |
Yusuf Kara | 2 |
Boyd, Donald | 1 |
Cai, Li | 1 |
Denbleyker, John Nickolas | 1 |
Forrow, Lauren | 1 |
Gelbal, Selahattin | 1 |
Gill, Brian | 1 |
Guo, Hongwen | 1 |
More ▼ |
Publication Type
Reports - Research | 10 |
Journal Articles | 8 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 4 |
High Schools | 4 |
Middle Schools | 4 |
Secondary Education | 4 |
Junior High Schools | 3 |
Grade 6 | 2 |
Elementary Secondary Education | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
Grade 7 | 1 |
More ▼ |
Audience
Location
Pennsylvania | 3 |
New York | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
National Merit Scholarship… | 1 |
Peabody Individual… | 1 |
Preliminary Scholastic… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Grantee Submission, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. (2020) estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores,…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Cornelis Potgieter; Xin Qiao; Akihito Kamata; Yusuf Kara – Journal of Educational Measurement, 2024
As part of the effort to develop an improved oral reading fluency (ORF) assessment system, Kara et al. estimated the ORF scores based on a latent variable psychometric model of accuracy and speed for ORF data via a fully Bayesian approach. This study further investigates likelihood-based estimators for the model-derived ORF scores, including…
Descriptors: Oral Reading, Reading Fluency, Scores, Psychometrics
Ozdemir, Burhanettin; Gelbal, Selahattin – Education and Information Technologies, 2022
The computerized adaptive tests (CAT) apply an adaptive process in which the items are tailored to individuals' ability scores. The multidimensional CAT (MCAT) designs differ in terms of different item selection, ability estimation, and termination methods being used. This study aims at investigating the performance of the MCAT designs used to…
Descriptors: Scores, Computer Assisted Testing, Test Items, Language Proficiency
Pei-Hsuan Chiu – ProQuest LLC, 2018
Evidence of student growth is a primary outcome of interest for educational accountability systems. When three or more years of student test data are available, questions around how students grow and what their predicted growth is can be answered. Given that test scores contain measurement error, this error should be considered in growth and…
Descriptors: Bayesian Statistics, Scores, Error of Measurement, Growth Models
Tong, Xin; Zhang, Zhiyong – Grantee Submission, 2020
Despite broad applications of growth curve models, few studies have dealt with a practical issue -- nonnormality of data. Previous studies have used Student's "t" distributions to remedy the nonnormal problems. In this study, robust distributional growth curve models are proposed from a semiparametric Bayesian perspective, in which…
Descriptors: Robustness (Statistics), Bayesian Statistics, Models, Error of Measurement
Forrow, Lauren; Starling, Jennifer; Gill, Brian – Regional Educational Laboratory Mid-Atlantic, 2023
The Every Student Succeeds Act requires states to identify schools with low-performing student subgroups for Targeted Support and Improvement or Additional Targeted Support and Improvement. Random differences between students' true abilities and their test scores, also called measurement error, reduce the statistical reliability of the performance…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
This Snapshot highlights key findings from a study that used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI) or Additional Targeted Support and Improvement (ATSI). The…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Regional Educational Laboratory Mid-Atlantic, 2023
The "Stabilizing Subgroup Proficiency Results to Improve the Identification of Low-Performing Schools" study used Bayesian stabilization to improve the reliability (long-term stability) of subgroup proficiency measures that the Pennsylvania Department of Education (PDE) uses to identify schools for Targeted Support and Improvement (TSI)…
Descriptors: At Risk Students, Low Achievement, Error of Measurement, Measurement Techniques
Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry – ETS Research Report Series, 2015
The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…
Descriptors: Item Response Theory, Computation, Statistical Bias, Error of Measurement
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Yang, Ji Seung; Hansen, Mark; Cai, Li – Educational and Psychological Measurement, 2012
Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…
Descriptors: Item Response Theory, Scores, Statistical Analysis, Comparative Analysis
Denbleyker, John Nickolas – ProQuest LLC, 2012
The shortcomings of the proportion above cut (PAC) statistic used so prominently in the educational landscape renders it a very problematic measure for making correct inferences with student test data. The limitations of PAC-based statistics are more pronounced with cross-test comparisons due to their dependency on cut-score locations. A better…
Descriptors: Achievement Gap, Bayesian Statistics, Inferences, Trend Analysis
Boyd, Donald; Lankford, Hamilton; Loeb, Susanna; Wyckoff, James – Journal of Educational and Behavioral Statistics, 2013
Test-based accountability as well as value-added asessments and much experimental and quasi-experimental research in education rely on achievement tests to measure student skills and knowledge. Yet, we know little regarding fundamental properties of these tests, an important example being the extent of measurement error and its implications for…
Descriptors: Accountability, Educational Research, Educational Testing, Error of Measurement
Oh, Hyeonjoo J.; Guo, Hongwen; Walker, Michael E. – ETS Research Report Series, 2009
Issues of equity and fairness across subgroups of the population (e.g., gender or ethnicity) must be seriously considered in any standardized testing program. For this reason, many testing programs require some means for assessing test characteristics, such as reliability, for subgroups of the population. However, often only small sample sizes are…
Descriptors: Standardized Tests, Test Reliability, Sample Size, Bayesian Statistics

Kim, Jwa K.; Nicewander, W. Alan – Psychometrika, 1993
Bias, standard error, and reliability of five ability estimators were evaluated using Monte Carlo estimates of the unknown conditional means and variances of the estimators. Results indicate that estimates based on Bayesian modal, expected a posteriori, and weighted likelihood estimators were reasonably unbiased with relatively small standard…
Descriptors: Ability, Bayesian Statistics, Equations (Mathematics), Error of Measurement