Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Bayesian Statistics | 11 |
Decision Making | 11 |
Scores | 11 |
Foreign Countries | 5 |
Classification | 4 |
Selection | 4 |
Test Results | 3 |
Accuracy | 2 |
Evaluation Methods | 2 |
Intelligent Tutoring Systems | 2 |
Item Response Theory | 2 |
More ▼ |
Source
Education and Information… | 1 |
International Educational… | 1 |
Journal of Educational and… | 1 |
Measurement:… | 1 |
ProQuest LLC | 1 |
Psychometrika | 1 |
Author
Vos, Hans J. | 4 |
van der Linden, Wim J. | 4 |
Chen, Yunxiao | 1 |
Dalia Khairy | 1 |
Huan Liu | 1 |
Lee, Yi-Hsuan | 1 |
Levy, Roy | 1 |
Li, Xiaoou | 1 |
Marwa F. Areed | 1 |
Mohamed A. Amasha | 1 |
Nouf Alharbi | 1 |
More ▼ |
Publication Type
Reports - Research | 5 |
Journal Articles | 4 |
Reports - Evaluative | 4 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Huan Liu – ProQuest LLC, 2024
In many large-scale testing programs, examinees are frequently categorized into different performance levels. These classifications are then used to make high-stakes decisions about examinees in contexts such as in licensure, certification, and educational assessments. Numerous approaches to estimating the consistency and accuracy of this…
Descriptors: Classification, Accuracy, Item Response Theory, Decision Making
Levy, Roy – Measurement: Interdisciplinary Research and Perspectives, 2022
Obtaining values for latent variables in factor analysis models, also referred to as factor scores, has long been of interest to researchers. However, many treatments of factor analysis do not focus on inference about the latent variables, and even fewer do so from a Bayesian perspective. Researchers may therefore be ill-acquainted with Bayesian…
Descriptors: Factor Analysis, Bayesian Statistics, Inferences, Decision Making
Dalia Khairy; Nouf Alharbi; Mohamed A. Amasha; Marwa F. Areed; Salem Alkhalaf; Rania A. Abougalala – Education and Information Technologies, 2024
Student outcomes are of great importance in higher education institutions. Accreditation bodies focus on them as an indicator to measure the performance and effectiveness of the institution. Forecasting students' academic performance is crucial for every educational establishment seeking to enhance performance and perseverance of its students and…
Descriptors: Prediction, Tests, Scores, Information Retrieval
Chen, Yunxiao; Lee, Yi-Hsuan; Li, Xiaoou – Journal of Educational and Behavioral Statistics, 2022
In standardized educational testing, test items are reused in multiple test administrations. To ensure the validity of test scores, the psychometric properties of items should remain unchanged over time. In this article, we consider the sequential monitoring of test items, in particular, the detection of abrupt changes to their psychometric…
Descriptors: Standardized Tests, Test Items, Test Validity, Scores
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making

van der Linden, Wim J.; Vos, Hans J. – Psychometrika, 1996
A Bayesian approach for simultaneous optimization of test-based decisions is presented using the example of a selection decision for a treatment followed by a mastery decision. A distinction is made between weak and strong rules, and conditions for monotonicity of optimal weak and strong rules are presented. (Author/SLD)
Descriptors: Bayesian Statistics, Decision Making, Scores, Selection
van der Linden, Wim J.; Vos, Hans J. – 1994
This paper presents some Bayesian theories of simultaneous optimization of decision rules for test-based decisions. Simultaneous decision making arises when an institution has to make a series of selection, placement, or mastery decisions with respect to subjects from a population. An obvious example is the use of individualized instruction in…
Descriptors: Bayesian Statistics, Decision Making, Foreign Countries, Scores
Vos, Hans J. – 1994
Some applications of Bayesian decision theory to intelligent tutoring systems are considered. How the problem of adapting the appropriate amount of instruction to the changing nature of a student's capabilities during the learning process can be situated in the general framework of Bayesian decision theory is discussed in the context of the…
Descriptors: Bayesian Statistics, Decision Making, Foreign Countries, Intelligent Tutoring Systems
Vos, Hans J. – 1994
A method is proposed for optimizing cutting scores for a selection-placement-mastery problem simultaneously. A simultaneous approach has two advantages over separate optimization. First, test scores used in previous decisions can be used as "prior data" in later decisions, increasing the efficiency of the decisions. Then, more realistic…
Descriptors: Bayesian Statistics, Computer Assisted Instruction, Criteria, Cutting Scores

van der Linden, Wim J. – 1986
Differences between traditional linear regression and a Bayesian approach to classification are discussed. Classification consists of assigning subjects to one of several available treatments on the basis of their test scores when the success of each treatment is measured by a different criterion. Formulating this problem as an empirical Bayes…
Descriptors: Achievement Tests, Bayesian Statistics, Classification, Decision Making
van der Linden, Wim J. – 1987
The use of Bayesian decision theory to solve problems in test-based decision making is discussed. Four basic decision problems are distinguished: (1) selection; (2) mastery; (3) placement; and (4) classification, the situation where each treatment has its own criterion. Each type of decision can be identified as a specific configuration of one or…
Descriptors: Bayesian Statistics, Classification, Decision Making, Foreign Countries