NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan; Jimin Oh; Chen Li; Jiexuan Huang; Yeran Tong – Society for Research on Educational Effectiveness, 2023
Background: The generalizability of a study's results continues to be at the forefront of concerns in evaluation research in education (Tipton & Olsen, 2018). Over the past decade, statisticians have developed methods, mainly based on propensity scores, to improve generalizations in the absence of random sampling (Stuart et al., 2011; Tipton,…
Descriptors: Generalizability Theory, Probability, Scores, Sampling
K. L. Anglin; A. Krishnamachari; V. Wong – Grantee Submission, 2020
This article reviews important statistical methods for estimating the impact of interventions on outcomes in education settings, particularly programs that are implemented in field, rather than laboratory, settings. We begin by describing the causal inference challenge for evaluating program effects. Then four research designs are discussed that…
Descriptors: Causal Models, Statistical Inference, Intervention, Program Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Scott, Paul Wesley – Practical Assessment, Research & Evaluation, 2019
Two approaches to causal inference in the presence of non-random assignment are presented: The Propensity Score approach which pseudo-randomizes by balancing groups on observed propensity to be in treatment, and the Endogenous Treatment Effects approach which utilizes systems of equations to explicitly model selection into treatment. The three…
Descriptors: Causal Models, Statistical Inference, Probability, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Keiffer, Greggory L.; Lane, Forrest C. – European Journal of Training and Development, 2016
Purpose: This paper aims to introduce matching in propensity score analysis (PSA) as an alternative statistical approach for researchers looking to make causal inferences using intact groups. Design/methodology/approach: An illustrative example demonstrated the varying results of analysis of variance, analysis of covariance and PSA on a heuristic…
Descriptors: Probability, Scores, Statistical Analysis, Statistical Inference
Guo, Shenyang; Fraser, Mark W. – SAGE Publications Ltd (CA), 2014
Fully updated to reflect the most recent changes in the field, the Second Edition of "Propensity Score Analysis" provides an accessible, systematic review of the origins, history, and statistical foundations of propensity score analysis, illustrating how it can be used for solving evaluation and causal-inference problems. With a strong…
Descriptors: Probability, Scores, Statistical Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Yongnam; Steiner, Peter – Educational Psychologist, 2016
When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…
Descriptors: Quasiexperimental Design, Causal Models, Statistical Inference, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
An, Chen; Braun, Henry; Walsh, Mary E. – Educational Measurement: Issues and Practice, 2018
Making causal inferences from a quasi-experiment is difficult. Sensitivity analysis approaches to address hidden selection bias thus have gained popularity. This study serves as an introduction to a simple but practical form of sensitivity analysis using Monte Carlo simulation procedures. We examine estimated treatment effects for a school-based…
Descriptors: Statistical Inference, Intervention, Program Effectiveness, Quasiexperimental Design
Imbens, Guido W.; Rubin, Donald B. – Cambridge University Press, 2015
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…
Descriptors: Causal Models, Statistical Inference, Statistics, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas – Psychometrika, 2013
Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…
Descriptors: Item Response Theory, Statistical Inference, Probability, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Darren; Higgins, Steve; Beckmann, Nadin – Journal of Educational Technology Systems, 2017
Online instructional videos are becoming increasingly common within education. This study adopts a quasi-experimental 2 × 2 crossover design (control and experimental groups) to evaluate the efficacy of instructional videos to teach practical rehabilitation skills. The students performed practical sessions in class and were formatively assessed by…
Descriptors: Video Technology, Educational Technology, Teaching Methods, Supplementary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Manzeske, David; Garland, Marshall; Williams, Ryan; West, Benjamin; Kistner, Alexandra Manzella; Rapaport, Amie – Society for Research on Educational Effectiveness, 2016
High-performing teachers tend to seek out positions at more affluent or academically challenging schools, which tend to hire more experienced, effective educators. Consequently, low-income and minority students are more likely to attend schools with less experienced and less effective educators (see, for example, DeMonte & Hanna, 2014; Office…
Descriptors: Merit Pay, Teacher Effectiveness, Academic Achievement, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)
Previous Page | Next Page »
Pages: 1  |  2