Publication Date
In 2025 | 0 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 28 |
Since 2016 (last 10 years) | 47 |
Since 2006 (last 20 years) | 76 |
Descriptor
Computer Assisted Testing | 82 |
Essays | 82 |
Scoring | 82 |
Writing Evaluation | 45 |
Automation | 30 |
Writing Tests | 25 |
English (Second Language) | 19 |
Comparative Analysis | 17 |
Correlation | 17 |
Scores | 16 |
Second Language Learning | 16 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 1 |
Teachers | 1 |
Location
Australia | 3 |
China | 3 |
Connecticut | 2 |
New Hampshire | 2 |
New York | 2 |
Rhode Island | 2 |
United Kingdom (England) | 2 |
Vermont | 2 |
Canada | 1 |
Germany | 1 |
Indonesia | 1 |
More ▼ |
Laws, Policies, & Programs
Every Student Succeeds Act… | 2 |
Assessments and Surveys
Test of English as a Foreign… | 11 |
Graduate Record Examinations | 6 |
National Assessment of… | 3 |
New York State Regents… | 2 |
Graduate Management Admission… | 1 |
Praxis Series | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Ramnarain-Seetohul, Vidasha; Bassoo, Vandana; Rosunally, Yasmine – Education and Information Technologies, 2022
In automated essay scoring (AES) systems, similarity techniques are used to compute the score for student answers. Several methods to compute similarity have emerged over the years. However, only a few of them have been widely used in the AES domain. This work shows the findings of a ten-year review on similarity techniques applied in AES systems…
Descriptors: Computer Assisted Testing, Essays, Scoring, Automation
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Stefan Ruseti; Ionut Paraschiv; Mihai Dascalu; Danielle S. McNamara – International Journal of Artificial Intelligence in Education, 2024
Automated Essay Scoring (AES) is a well-studied problem in Natural Language Processing applied in education. Solutions vary from handcrafted linguistic features to large Transformer-based models, implying a significant effort in feature extraction and model implementation. We introduce a novel Automated Machine Learning (AutoML) pipeline…
Descriptors: Computer Assisted Testing, Scoring, Automation, Essays
Shin, Jinnie; Gierl, Mark J. – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) technologies provide innovative solutions to score the written essays with a much shorter time span and at a fraction of the current cost. Traditionally, AES emphasized the importance of capturing the "coherence" of writing because abundant evidence indicated the connection between coherence and the overall…
Descriptors: Computer Assisted Testing, Scoring, Essays, Automation
Andersen, Øistein E.; Yuan, Zheng; Watson, Rebecca; Cheung, Kevin Yet Fong – International Educational Data Mining Society, 2021
Automated essay scoring (AES), where natural language processing is applied to score written text, can underpin educational resources in blended and distance learning. AES performance has typically been reported in terms of correlation coefficients or agreement statistics calculated between a system and an expert human examiner. We describe the…
Descriptors: Evaluation Methods, Scoring, Essays, Computer Assisted Testing
Firoozi, Tahereh; Bulut, Okan; Epp, Carrie Demmans; Naeimabadi, Ali; Barbosa, Denilson – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students' written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems…
Descriptors: Computer Assisted Testing, Scoring, Essays, Artificial Intelligence
Dhini, Bachriah Fatwa; Girsang, Abba Suganda; Sufandi, Unggul Utan; Kurniawati, Heny – Asian Association of Open Universities Journal, 2023
Purpose: The authors constructed an automatic essay scoring (AES) model in a discussion forum where the result was compared with scores given by human evaluators. This research proposes essay scoring, which is conducted through two parameters, semantic and keyword similarities, using a SentenceTransformers pre-trained model that can construct the…
Descriptors: Computer Assisted Testing, Scoring, Writing Evaluation, Essays
Wang, Wei; Dorans, Neil J. – ETS Research Report Series, 2021
Agreement statistics and measures of prediction accuracy are often used to assess the quality of two measures of a construct. Agreement statistics are appropriate for measures that are supposed to be interchangeable, whereas prediction accuracy statistics are appropriate for situations where one variable is the target and the other variables are…
Descriptors: Classification, Scaling, Prediction, Accuracy
Doewes, Afrizal; Pechenizkiy, Mykola – International Educational Data Mining Society, 2021
Scoring essays is generally an exhausting and time-consuming task for teachers. Automated Essay Scoring (AES) facilitates the scoring process to be faster and more consistent. The most logical way to assess the performance of an automated scorer is by measuring the score agreement with the human raters. However, we provide empirical evidence that…
Descriptors: Man Machine Systems, Automation, Computer Assisted Testing, Scoring
Almusharraf, Norah; Alotaibi, Hind – Technology, Knowledge and Learning, 2023
Evaluating written texts is believed to be a time-consuming process that can lack consistency and objectivity. Automated essay scoring (AES) can provide solutions to some of the limitations of human scoring. This research aimed to evaluate the performance of one AES system, Grammarly, in comparison to human raters. Both approaches' performances…
Descriptors: Writing Evaluation, Writing Tests, Essay Tests, Essays
Uto, Masaki; Okano, Masashi – IEEE Transactions on Learning Technologies, 2021
In automated essay scoring (AES), scores are automatically assigned to essays as an alternative to grading by humans. Traditional AES typically relies on handcrafted features, whereas recent studies have proposed AES models based on deep neural networks to obviate the need for feature engineering. Those AES models generally require training on a…
Descriptors: Essays, Scoring, Writing Evaluation, Item Response Theory
Keith Cochran; Clayton Cohn; Peter Hastings; Noriko Tomuro; Simon Hughes – International Journal of Artificial Intelligence in Education, 2024
To succeed in the information age, students need to learn to communicate their understanding of complex topics effectively. This is reflected in both educational standards and standardized tests. To improve their writing ability for highly structured domains like scientific explanations, students need feedback that accurately reflects the…
Descriptors: Science Process Skills, Scientific Literacy, Scientific Concepts, Concept Formation
Yishen Song; Qianta Zhu; Huaibo Wang; Qinhua Zheng – IEEE Transactions on Learning Technologies, 2024
Manually scoring and revising student essays has long been a time-consuming task for educators. With the rise of natural language processing techniques, automated essay scoring (AES) and automated essay revising (AER) have emerged to alleviate this burden. However, current AES and AER models require large amounts of training data and lack…
Descriptors: Scoring, Essays, Writing Evaluation, Computer Software
Wan, Qian; Crossley, Scott; Allen, Laura; McNamara, Danielle – Grantee Submission, 2020
In this paper, we extracted content-based and structure-based features of text to predict human annotations for claims and nonclaims in argumentative essays. We compared Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support Vector Classification, Random Forest, and Neural Networks to train classification models. Random…
Descriptors: Persuasive Discourse, Essays, Writing Evaluation, Natural Language Processing