Publication Date
| In 2026 | 0 |
| Since 2025 | 9 |
| Since 2022 (last 5 years) | 93 |
| Since 2017 (last 10 years) | 214 |
| Since 2007 (last 20 years) | 347 |
Descriptor
| Computer Assisted Testing | 510 |
| Scoring | 510 |
| Test Items | 111 |
| Test Construction | 102 |
| Automation | 92 |
| Essays | 82 |
| Foreign Countries | 80 |
| Scores | 79 |
| Adaptive Testing | 78 |
| Evaluation Methods | 77 |
| Computer Software | 75 |
| More ▼ | |
Source
Author
| Bennett, Randy Elliot | 11 |
| Attali, Yigal | 9 |
| Anderson, Paul S. | 7 |
| Williamson, David M. | 6 |
| Bejar, Isaac I. | 5 |
| Ramineni, Chaitanya | 5 |
| Stocking, Martha L. | 5 |
| Xi, Xiaoming | 5 |
| Zechner, Klaus | 5 |
| Bridgeman, Brent | 4 |
| Davey, Tim | 4 |
| More ▼ | |
Publication Type
Education Level
Location
| Australia | 10 |
| China | 10 |
| New York | 9 |
| Japan | 7 |
| Netherlands | 6 |
| Canada | 5 |
| Germany | 5 |
| Iran | 4 |
| Taiwan | 4 |
| United Kingdom | 4 |
| United Kingdom (England) | 4 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hacer Karamese – ProQuest LLC, 2022
Multistage adaptive testing (MST) has become popular in the testing industry because the research has shown that it combines the advantages of both linear tests and item-level computer adaptive testing (CAT). The previous research efforts primarily focused on MST design issues such as panel design, module length, test length, distribution of test…
Descriptors: Adaptive Testing, Scoring, Computer Assisted Testing, Design
Rebecka Weegar; Peter Idestam-Almquist – International Journal of Artificial Intelligence in Education, 2024
Machine learning methods can be used to reduce the manual workload in exam grading, making it possible for teachers to spend more time on other tasks. However, when it comes to grading exams, fully eliminating manual work is not yet possible even with very accurate automated grading, as any grading mistakes could have significant consequences for…
Descriptors: Grading, Computer Assisted Testing, Introductory Courses, Computer Science Education
Andersen, Øistein E.; Yuan, Zheng; Watson, Rebecca; Cheung, Kevin Yet Fong – International Educational Data Mining Society, 2021
Automated essay scoring (AES), where natural language processing is applied to score written text, can underpin educational resources in blended and distance learning. AES performance has typically been reported in terms of correlation coefficients or agreement statistics calculated between a system and an expert human examiner. We describe the…
Descriptors: Evaluation Methods, Scoring, Essays, Computer Assisted Testing
Huawei, Shi; Aryadoust, Vahid – Education and Information Technologies, 2023
Automated writing evaluation (AWE) systems are developed based on interdisciplinary research and technological advances such as natural language processing, computer sciences, and latent semantic analysis. Despite a steady increase in research publications in this area, the results of AWE investigations are often mixed, and their validity may be…
Descriptors: Writing Evaluation, Writing Tests, Computer Assisted Testing, Automation
Pearson, Christopher; Penna, Nigel – Assessment & Evaluation in Higher Education, 2023
E-assessments are becoming increasingly common and progressively more complex. Consequently, how these longer, more complex questions are designed and marked is imperative. This article uses the NUMBAS e-assessment tool to investigate the best practice for creating longer questions and their mark schemes on surveying modules taken by engineering…
Descriptors: Automation, Scoring, Engineering Education, Foreign Countries
McCaffrey, Daniel F.; Casabianca, Jodi M.; Ricker-Pedley, Kathryn L.; Lawless, René R.; Wendler, Cathy – ETS Research Report Series, 2022
This document describes a set of best practices for developing, implementing, and maintaining the critical process of scoring constructed-response tasks. These practices address both the use of human raters and automated scoring systems as part of the scoring process and cover the scoring of written, spoken, performance, or multimodal responses.…
Descriptors: Best Practices, Scoring, Test Format, Computer Assisted Testing
Firoozi, Tahereh; Bulut, Okan; Epp, Carrie Demmans; Naeimabadi, Ali; Barbosa, Denilson – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students' written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems…
Descriptors: Computer Assisted Testing, Scoring, Essays, Artificial Intelligence
Das, Bidyut; Majumder, Mukta; Phadikar, Santanu; Sekh, Arif Ahmed – Research and Practice in Technology Enhanced Learning, 2021
Learning through the internet becomes popular that facilitates learners to learn anything, anytime, anywhere from the web resources. Assessment is most important in any learning system. An assessment system can find the self-learning gaps of learners and improve the progress of learning. The manual question generation takes much time and labor.…
Descriptors: Automation, Test Items, Test Construction, Computer Assisted Testing
Casabianca, Jodi M.; Donoghue, John R.; Shin, Hyo Jeong; Chao, Szu-Fu; Choi, Ikkyu – Journal of Educational Measurement, 2023
Using item-response theory to model rater effects provides an alternative solution for rater monitoring and diagnosis, compared to using standard performance metrics. In order to fit such models, the ratings data must be sufficiently connected in order to estimate rater effects. Due to popular rating designs used in large-scale testing scenarios,…
Descriptors: Item Response Theory, Alternative Assessment, Evaluators, Research Problems
Ormerod, Christopher; Lottridge, Susan; Harris, Amy E.; Patel, Milan; van Wamelen, Paul; Kodeswaran, Balaji; Woolf, Sharon; Young, Mackenzie – International Journal of Artificial Intelligence in Education, 2023
We introduce a short answer scoring engine made up of an ensemble of deep neural networks and a Latent Semantic Analysis-based model to score short constructed responses for a large suite of questions from a national assessment program. We evaluate the performance of the engine and show that the engine achieves above-human-level performance on a…
Descriptors: Computer Assisted Testing, Scoring, Artificial Intelligence, Semantics
Xiong, Jiawei; Li, Feiming – Educational Measurement: Issues and Practice, 2023
Multidimensional scoring evaluates each constructed-response answer from more than one rating dimension and/or trait such as lexicon, organization, and supporting ideas instead of only one holistic score, to help students distinguish between various dimensions of writing quality. In this work, we present a bilevel learning model for combining two…
Descriptors: Scoring, Models, Task Analysis, Learning Processes
Dhini, Bachriah Fatwa; Girsang, Abba Suganda; Sufandi, Unggul Utan; Kurniawati, Heny – Asian Association of Open Universities Journal, 2023
Purpose: The authors constructed an automatic essay scoring (AES) model in a discussion forum where the result was compared with scores given by human evaluators. This research proposes essay scoring, which is conducted through two parameters, semantic and keyword similarities, using a SentenceTransformers pre-trained model that can construct the…
Descriptors: Computer Assisted Testing, Scoring, Writing Evaluation, Essays
Barry O'Sullivan – Language Assessment Quarterly, 2023
This paper highlights as issues of concern the rapid changes in technology and the tendency to report on partial validation efforts where the work is not identified as forming part of a larger validation project. With close human supervision emerging technologies can have a significant and positive impact on language testing. While technology…
Descriptors: Technology Uses in Education, Computer Assisted Testing, Language Tests, Supervision
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Rafner, Janet; Biskjaer, Michael Mose; Zana, Blanka; Langsford, Steven; Bergenholtz, Carsten; Rahimi, Seyedahmad; Carugati, Andrea; Noy, Lior; Sherson, Jacob – Creativity Research Journal, 2022
Creativity assessments should be valid, reliable, and scalable to support various stakeholders (e.g., policy-makers, educators, corporations, and the general public) in their decision-making processes. Established initiatives toward scalable creativity assessments have relied on well-studied standardized tests. Although robust in many ways, most…
Descriptors: Creativity, Evaluation Methods, Video Games, Computer Assisted Testing

Direct link
Peer reviewed
