NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ebert, James R.; Dolphin, Glenn; Bischoff, Paul – Journal of Geoscience Education, 2023
Three cohorts of six pre-service Earth Science teachers (undergraduate majors in Earth Science Education) participated in summer research experiences focused on developing dynamic physical models of Earth processes to help middle and high school students understand complex concepts and confront misconceptions. The pre-service teachers used…
Descriptors: Undergraduate Students, Student Research, Student Experience, Earth Science
Peer reviewed Peer reviewed
Direct linkDirect link
Paik, Seoung-Hey; Kim, Sungki; Kim, Kihyang – Journal of Chemical Education, 2017
The four representative models that define oxidation-reduction reactions are often used differently in different situations or contexts in chemistry textbooks. Although integrated models have been suggested to overcome the confusion caused by this, they have not been successful. We therefore aim to interpret the causes for difficulties in the…
Descriptors: Science Instruction, Models, Classification, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
van Buuren, Onne; Heck, André; Ellermeijer, Ton – Research in Science Education, 2016
A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…
Descriptors: Foreign Countries, Physics, Secondary School Science, Science Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Yeung Chung – Journal of Biological Education, 2015
Self-generated analogical models have emerged recently as alternatives to teacher-supplied analogies and seem to have good potential to promote deep learning and scientific thinking. However, studies of the ways and contexts in which students generate these models are still too limited to allow a fuller appraisal of these models' effectiveness in…
Descriptors: Science Instruction, Biology, Models, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Mudau, Awelani V. – EURASIA Journal of Mathematics, Science & Technology Education, 2016
The purpose of this paper is to present a conceptual framework for diagnosing teaching difficulties of a science topic in the science classroom. The development of the framework is presented as well as descriptions of the features of the framework. How the framework can be used is also elaborated? Furthermore, there is a detailed indication of an…
Descriptors: Classroom Techniques, Models, Teaching Methods, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Peer reviewed Peer reviewed
Direct linkDirect link
Ryan, Sheila; Herrington, Deborah G. – Journal of Chemical Education, 2014
Understanding what happens at the particulate level when ionic compounds dissolve in water is difficult for many students, yet this understanding is critical in explaining many macroscopic observations. This article describes a student-centered activity designed to help strengthen students' conceptual understanding of this process at the…
Descriptors: Chemistry, Science Activities, Science Instruction, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Crismond, David – Science Teacher, 2013
This article describes beginner habits and misconceptions related to design practices. Once teachers are aware of these habits and misconceptions, they can more easily recognize them and work to remedy them through instruction. Presented herein are eight practice habits. Each item begins with the practice, describes a related design habit or…
Descriptors: Science Instruction, Science Teachers, Misconceptions, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Prilliman, Stephen G. – Journal of Chemical Education, 2014
The College Board's recently revised curriculum for advanced placement (AP) chemistry places a strong emphasis on conceptual understanding, including representations of particle phenomena. This change in emphasis is informed by years of research showing that students could perform algorithmic calculations but not explain those calculations…
Descriptors: Science Instruction, Secondary School Science, High Schools, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Supasorn, Saksri – Chemistry Education Research and Practice, 2015
This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…
Descriptors: Grade 12, Cytology, Science Experiments, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Kaewkhong, Kreetha; Mazzolini, Alex; Emarat, Narumon; Arayathanitkul, Kwan – Physics Education, 2010
This article investigates the optics misconceptions of 220 year 11 Thai high-school students. These misconceptions became apparent when the students attempted to explain how an object submerged in a water tank is "seen" by an observer looking into the tank from above and at an angle. The two diagnostic questions used in the study probe…
Descriptors: Student Attitudes, Optics, Foreign Countries, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Criswell, Brett – Journal of Chemical Education, 2008
Within the historical context of the development of chemistry, Avogadro's hypothesis represents a fundamental concept: It allowed Avogadro to explain Gay-Lussac's law of combining volumes and it allowed Cannizzaro to establish a more accurate set of atomic mass values. If students are going to understand the concept of relative atomic masses and…
Descriptors: Fundamental Concepts, Chemistry, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Bouwma-Gearhart, Jana; Stewart, James; Brown, Keffrelyn – International Journal of Science Education, 2009
Understanding the particulate nature of matter (PNM) is vital for participating in many areas of science. We assessed 11 students' atomic/molecular-level explanations of real-world phenomena after their participation in a modelling-based PNM unit. All 11 students offered a scientifically acceptable model regarding atomic/molecular behaviour in…
Descriptors: Science Activities, Causal Models, Heat, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Papaphotis, Georgios; Tsaparlis, Georgios – Chemistry Education Research and Practice, 2008
Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…
Descriptors: Foreign Countries, Grade 12, Quantum Mechanics, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Hubenthal, Michael; Braile, Larry; Taber, John – Science Teacher, 2008
The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…
Descriptors: Creative Teaching, Seismology, Concept Formation, Misconceptions
Previous Page | Next Page »
Pages: 1  |  2  |  3